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Executive Summary 

Background 

This research report presents the findings of Project TAP6234, which was to develop an approach for 
measurement of road reliability for inclusion in the Australian Transport Assessment and Planning (ATAP) 
Guidelines. It is widely recognised that travellers consider travel time reliability in their travel decision making. 
Therefore, the benefits of improved travel time reliability should be accounted for in appraisal of transport 
related initiatives. The work in this project was one of two parts of an initiative aimed at developing a 
methodology and parameters for calculating the benefits of improvements in travel time reliability measured 
as follows: 

Value of a travel time reliability improvement benefit ($) = Unit value of reliability ($/min) x Saving 
in travel time variability (mins) 

For cost–benefit analysis (CBA) purposes, estimates of reliability throughout a network or along a corridor are 
required for the base case (without the initiative) and the project case (with the initiative) and the benefit is 
calculated from the difference between them (the saving in travel time variability). This project relates to the 
second part of the benefit formula which is the reduction in travel time variability. 

A range of Australian data for observed travel times and their standard deviations was used to refine formulas 
that can be applied to a range of road stereotypes (capacity and congestion). This project built upon the work 
already undertaken by Austroads, academia and internationally.  

This project’s purpose was to obtain calibrated formulas that relate the standard deviation of travel times to 
observed measures of road capacity and congestion to model travel time variability in Australia. The project 
commenced with a literature review of best practice methods of forecasting changes in travel time variability 
internationally and in Australia as well as how variability is treated in strategic transport models. Data on travel 
time variability for different roads and journeys in different cities and regions were collected and analysed, 
alternative functional forms tested, and the best fitting functional form(s) were recommended. These 
recommended models were then tested on two actual past road infrastructure projects and one test involved 
the use of an urban transport model. Recommendations were developed for a practical approach to estimate 
changes in travel time variability for use in the CBA of road initiatives and for use in transport models. 

Purpose of the work 

In the context of transport, travel time reliability is used to describe how certain the travel time is for a journey 
for a road user. Poor travel time reliability causes people to leave earlier to reduce the probability of being late 
and to be late more often. Reliability can influence route choice decisions including whether to use a toll road 
and is therefore relevant for toll road patronage forecasting. Travel time reliability has been an active area of 
research in the past one decade owing to its repercussions on traffic movement and congestion in a road 
network. The benefit of changes in travel time reliability expressed as a monetary amount ought to be counted 
in CBAs of transport projects and/or policy changes. The benefit is estimated by multiplying the predicted 
changes in travel time reliability improvements for a project by road users’ willingness-to-pay (WTP) (measured 
in $/h) to reduce travel time variability. This project develops a methodology and parameter values to estimate 
the former quantity, that is, a way to predict changes in travel time reliability. Determination of WTP values of 
reliability changes is beyond the scope of this work. The mathematical models developed to forecast travel 
time reliability for different elements in a road network need to be readily usable by practitioners. While 
parameter values estimated from available data are provided, practitioners should be able to recalibrate the 
models using their own data. 

Using Standard Deviation of Travel Time 

Travel time reliability relates to the distribution, spread or dispersion of travel times over a link or route and 
over time. It can be measured in a variety of ways. For this project, the chosen measure is the standard 
deviation (SD) of travel time over a given period. This was recommended for practical application in CBAs and 
toll road patronage forecasting by a scoping study (TIC 2016). The main two approaches that have been 
developed to value reliability are the mean-variance and scheduling approaches. The mean-variance approach 



 

Road Reliability Measurement –Research Report  viii 

yields a single value as the marginal value of one SD of travel time. It assumes symmetric penalties for being 
early and being late. The scheduling approach attaches different values to time early and time late. While the 
scheduling approach is conceptually preferred, it is quite complex to apply because it demands knowledge of 
travellers’ preferred arrival times. The mean-variance approach is the simplest and most feasible way to 
address reliability in CBAs of road projects. 

The Three Levels of Analyses 

As the road network is composed of several elements, this project addresses computing travel time variability 
at the link, route and the entire network level.  

 Links are the basic component in a road network and are subjected to day-to-day changes in travel time. 
Thus, it is essential to predict SD of link travel time which can then contribute to understanding 
macroscopic elements in a road network.  

 A route is a series of links traversed by users to travel from an origin to a destination. It is paramount to 
study travel time variability forecasting at a route level because transport users experience and make 
decisions based on travel time variability for entire journeys, and not for the individual links that comprise 
a route. Summing the travel time SDs of the links that constitute a route is not a correct way to obtain route 
travel time SD. It is mathematically flawed as it assumes that the constituent links are independent of one 
another, that is the traffic condition on one link does not affect other links. The traffic conditions on 
individual links are correlated. For example, heavy congestion can result in a queue-spillback. The 
congested traffic condition gradually expands to the upstream links making the links interdependent. Thus, 
this project investigates the appropriate method to predict route travel time SD to account for 
interdependencies between link SDs.  

 Network level analysis of travel time reliability has also been considered as it provides a tool to evaluate 
travel time reliability benefits/disbenefits across an entire road network, providing useful information for 
transport planning and appraisal of large projects with widespread affects throughout a network.  

Model Development 

An extensive literature review was undertaken at the start of the project to determine the state-of-the-art in 
modelling travel time reliability for links, routes and a network level. 

Link — For the link level analysis, the literature search identified 11 models for determining travel time 
variability. As the models were developed in different geographies, a numerical experiment was used as a 
common test bed to compare these models. Most of these models were considered unsuitable as they 
forecasted an ever-increasing travel time SD as congestion increased, which is unrealistic as travel time tends 
to stabilise at higher congestion levels. As a result, three models, the UK model, New Zealand model and the 
Dutch model, were shortlisted for further consideration. Furthermore, an Australian Transport Assessment and 
Planning (ATAP) model was developed.  

The ATAP link model utilises a nonlinear equation expressing travel time coefficient of variation (CoV) in as a 
function of the congestion index (CI; defined as the ratio of prevailing travel time and free-flow travel time) on 
a link. CoV was selected as the dependent variable, over SD, because CoV represents a standardised 
measure that facilitates comparison between links of varying lengths. Similarly, CI was chosen over volume-
to-capacity ratio because volume, which represents demand, is not easily measurable. For example, while 
traffic volume is equal to demand in under-saturated conditions, it is much lower than the demand in saturated 
traffic. Travel time on the other hand is consistent in both under-saturated and saturated conditions. 
Furthermore, link capacities are also difficult to measure. Hence, the CI approach has advantages over the 
volume-based approach.  

Unlike the other three shortlisted models, the ATAP link model curve increases sharply at lower CIs, and 
follows a declining growth rate at higher CIs. This trend is consistent with real-world traffic dynamics where the 
improvements in travel time reliability are significant at lower congestion levels and miniscule at higher 
congestion levels. Thus, the ATAP link model (shown below) was chosen as the recommended approach for 
forecasting link travel time variability.  

𝑪𝒐𝑽 = 𝒂 ቈ
(𝑪𝑰 − 𝟏)

𝑪𝑰


𝒃

 ∀  𝑪𝑰 ≥ 𝟏 
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Where: 
𝐶𝑜𝑉 = coefficient of variation, 

ఙ

்
 

𝐶𝐼 = congestion index = 𝑚𝑎𝑥 (1,
்

்
), where 𝑇 = mean travel time (minutes) and 𝑇 = free-flow travel time 

(minutes) 
a = calibration parameter that sets the upper limit of CoV,  a | a > 0 
b = calibration parameter that determines the rate at which CoV approaches the maximum, b | b ∈ (0, 1) 

Route — For the route level analysis, the literature search identified the Nicholson Model (referred to as the 
correlation route model (CRM)) as the recommended approach to determine route travel time variability. The 
model not only adds the individual travel time variances of the constituent links, but also the travel time 
correlations among links. Thus, the CRM (shown below) is able to capture link inter-dependencies in 
forecasting route travel time SD (unlike simply adding individual link travel time SDs).  

𝝈𝒓
𝟐 =  𝝈𝒊

𝟐

𝒏

𝒊ୀ𝟏

+ 𝟐   𝝆𝒊,𝒋𝝈𝒊𝝈𝒋

𝒏

𝒋ୀ𝒊ା𝟏

𝒏ି𝟏

𝒊ୀ𝟏

, 𝒊 < 𝒋 

Where: 
𝜎

ଶ = variance of travel time of route with n number of links 
𝜎

ଶ  = variance of travel time of link i 
𝜎  = SD of travel time of link i 
𝜎  = SD of travel time of link j 
ρ୧,୨ = correlation coefficient of travel time between links i and j 
 

The CRM comprises two sub-models: 1) the ATAP link model that determines travel time SD of individual links, 
and 2) the correlation coefficient model (CCM) that predicts the degree of correlation among links forming a 
given route. The CCM (shown below) is a linear-log model relating the degree of correlation to the log of 
distance between the mid-points of two links within a route.  

𝝆𝒊,𝒋 =  𝑴𝒂𝒙[𝟎, 𝒂. 𝐋𝐧(𝐋) + 𝐛] 
 

Where: 
𝜌, = correlation coefficient of travel time between links i and j where i < j 
𝐿 = distance between the midpoints of two links (kilometres) 
a, b = parameters 

Network — For network-level analysis, two methods of determining travel time reliability were identified. The 
first method, the Approximate Route Standard Deviation (ARSD), determines the route travel time variability 
as a correction factor times the summation of link travel time SDs forming the route. The correction factor 
roughly accounts for the errors arising due to not considering link interdependencies. While this method cannot 
provide an accurate route travel time SD, it is a practical and straightforward approach to obtain an approximate 
value rather than using the CRM, which is more complex and resource intensive. 

𝝈𝒓 ≈ 𝜸  𝝈𝒍 

Where: 
𝜎 = SD of travel time on route 
𝜎 = SD of travel time on links 
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γ = correction factor 

It should be noted that all of the above models only focus on predicting the travel time variability and do not 
take into consideration its impact on the resulting route choice behaviour of road users. This gap is filled by 
the second approach, the strategic user equilibrium (StrUE), which is a novel methodology. It is much superior 
to ARSD because it accounts for impacts of travel time variability on route choice and vice-versa. StrUE 
estimates travel time variability given day-to-day changes in origin–destination demands and/or link capacities. 
However, while methodologically correct, StrUE is more complex and resource intensive to implement. 

Calibration and Validation 

Datasets — The data for this exercise was obtained from different jurisdictions across Australia: Perth 
(provided by MRWA), Gold Coast and Brisbane (provided by TMR) and Sydney (available from UNSW). The 
Perth network performance reporting system (NetPReS) dataset used is hybrid traffic data for 29 arterial and 
freeway routes in the Perth metropolitan area collected over 2018 to 2020. The data include traffic speed for 
every 15-minute period during the day for each link. The NetPReS dataset was used to calibrate the ATAP 
link, CCM and the ARSD models. The Queensland data comprised daily NPI and Bluetooth data (by 15-minute 
periods) for arterials and freeways, and the Sydney data comprised travel time information for around 35 routes 
in Sydney collected using the Google API. Besides calibration and validation, this project tested two case 
studies (for Gold Coast and Perth) to assess the goodness of the CRM. This was considered desirable because 
the CRM includes the ATAP link and CCM as sub-models. 

Link — Individual ATAP link models were calibrated for forecasting travel time reliability for arterial and freeway 
links. Four months of traffic data (that is August to November 2017) was used to calibrate the model. The free-
flow speed was taken as the 99th percentile of all speed values (in 15-minute periods) witnessed across all 
weekdays, excluding public holidays, in a month. All the speeds were then converted into travel times using 
link length information. The data were then filtered to remove any observations from which data were missing 
or where the CI was less than 1 because travel time should always be greater than or equal to free-flow travel 
time. The CoV and CI variables were then transformed by taking logarithms, which were then used for 
calibration using the linear regression tool in MS-Excel. An alternative functional form was also tested 
alongside the ATAP link model. The alternative functional form produced a marginally better fit than the ATAP 
link  model but was rejected because it is more difficult to calibrate, requiring non-linear regression, and the 
curve flattens out too much at high congestion levels. The calibrated ATAP model was then applied to 
Queensland and Sydney data for validation. It was found that the calibrated ATAP model showed a reasonably 
good fit to these data.    

Route — To develop the CRM, the CCM was calibrated first using the NetPReS data. A separate CCM was 
calibrated for the following categories: (1) freeway and arterial, (2) inbound and outbound, and (3) AM (7-9am), 
Inter-peak (9am-3pm), PM (3-6pm) and Off-peak (5-7am and 6-9pm). Thus, there were 16 sets of calibration 
parameters. The ATAP link model together with the CCM were then utilised to determine the estimated route 
travel time SD. It was compared against the measured route travel time SD, which was determined as follows: 
1) summing up the individual link travel times for a given 15-minute time period across all weekdays, excluding 
public holidays, in the month and then finding its SD. The comparison revealed that the CRM gives a 
reasonable fit to the measured route travel time SDs. Case studies were undertaken using before-vs-after data 
for infrastructure improvements in Brisbane and Perth. For the Perth case study, traffic data for four months in 
2018 (before) was compared against the same four months in 2019 (after). The results again substantiated 
the accuracy of CRM in predicting observed route travel time SD. However, the results from the Brisbane case 
study were not as promising, which could be explained due to a lack of localised calibration (that is the models 
were calibrated on Perth data and not on Brisbane data) and geographical differences in driving behaviour, 
road design and traffic conditions. 

Network — For the network-level analysis, the ARSD method was calibrated using the NetPReS data. ARSD 
model calibration was undertaken for each arterial and freeway to obtain the parameter value. The calibrated 
ARSD model was then used on the Sydney data to estimate route travel time SD. The case study tested three 
scenarios such as an increase in roadway capacity. The results showed predicted changes in route travel time 
SDs for the different arterial and freeway routes in Sydney. Then, the StrUE model was applied on the same 
Sydney network and same three scenarios tested. The differences between ARSD and StrUE along with their 
merits and demerits were discussed. 

Benefits of this Work 

This report presents the development and implementation of robust link and route-level models to predict travel 
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time reliability in a road network — the ATAP link model and the CRM route model. Two different methods for 
modelling network travel time reliability, ARSD and StrUE, were also shown. The report’s contribution is to 
allow the ATAP guidelines to present methodologies and parameters for evaluating travel time variability.  

While the formulas have been rigorously calibrated and validated to provide default values, it is recommended 
that practitioners calibrate the models using their own local data following the calibration processes outlined in 
this report to account for traffic dynamics characteristic to a specific geography or jurisdiction. 
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1 Introduction 

1.1 Project Objectives 

The objective of this project is to obtain calibrated formula(s) related to the standard deviation (SD) of travel 
times to observed measures such as road capacity and level of congestion in order to determine travel time 
variability in Australia (ATAP Brief, 2019a). The following tasks were set to achieve the objectives of the project: 

1. Conduct a literature review on the state-of-the-art for forecasting changes in travel time variability 
internationally and in Australia and how it is considered in strategic transport models1. The objective has 
been addressed in Section 2. 

2. Collect travel time variability data for different roads and journeys across different cities and regions in 
Australia. Details of the available data are presented in Appendix A3. 

3. Perform statistical analyses on the available datasets testing different functional forms and find the best 
fitting functional form. Sections 3 and 4 discuss the data analysis methodology and results respectively. 

4. Test the recommended approaches on at least one current or past road infrastructure projects, which 
includes a test case showing the application of travel time variability in a strategic transport model. The 
objective has been addressed in Section 4 using Perth and Brisbane case studies. Additionally, Section 4 
discusses the application of ARSD and StrUE on a Sydney case study. 

5. Develop recommendations for practitioners to determine travel time variability, based on SD and coefficient 
of variation (CoV), which in turn feeds into travel time reliability estimation for application in project appraisal 
processes of road initiatives (e.g. cost benefit analysis (CBA)) and for use in transport models. It is 
noteworthy that while the integration of travel time reliability estimation into metropolitan strategic transport 
models is the ultimate objective, the aim of this project is to develop the formulas that can be used in the 
economic appraisal of projects. 

1.2 Organisation of the Research Report 

The organisation of this research report is as follows.  

 Section 2 discusses the findings from the literature review on:  

(i) travel time variability estimation on links,  

(ii) approaches to determine travel time variability on routes, and  

(iii) introducing travel time reliability into the framework of strategic transport models.  

 Section 3 presents the proposed methodology to be adopted at the three levels of interest, that is links, 
routes and network, based on literature review and empirical evidence.  

 Section 4 details the calibration and validation procedure followed in model development and presents the 
formula(s), at link and route level, expressing travel time variability in terms of SD or CoV.    

 Section 5 provides a summary of the study and the next steps towards the completion of this project.  

This report also comprises an Appendix which details the work conducted during the entire duration of the 
project and how the proposed calibrated models were obtained.  

 

1 The review will not cover different approaches such as scheduling approaches for valuing reliability because the decision to use the 
mean-variance approach has already been taken (ATAP, 2019a; Transport and Infrastructure Council, 2016). 
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1.3 Scope of Work 

ATAP (2019a) provides the formula to determine the valuation for travel time reliability which is shown in 
Equation 1.1.  

𝑻𝑻𝑹𝑩 = 𝒗. ∆𝑹 [EQ 1.1] 

 

Where: 

TTRB: Travel time reliability benefit, $ 

𝑣: unit value of travel time reliability, $/minutes 

∆𝑅: Change in one SD in travel time, minutes 

Equation 1.1 can be used for CBA to estimate and compare the monetary benefits of reliability changes over 
an entire network or along a corridor between the base case (without the initiative) and the proposed alternative 
(with the initiative)2.  

ATAP requires that the formulas developed be suitable for inclusion in the ATAP Guidelines and hence 
inclusion in economic assessments submitted to Infrastructure Australia and jurisdictional budget processes. 
Hence, this project looked at determining travel time variability at the three identified levels, that is links, routes 
and network. Furthermore, the formulas are calibrated using traffic data from three major urban centres in 
Australia. This is done because major cities, in general, experience frequent and widespread congestion which 
adversely impacts travel time variability. Considering regional road networks for analysis, which are less prone 
to congestion levels, is beyond the scope of this work. 

 

  

 

2 The first term in Equation 1.1 (the unit value of travel time reliability benefit) corresponds to the willingness to pay (WTP) of 
commuters, that is the dollar value per minute they associate towards an increased travel time reliability. This WTP measure can be 
determined through discrete choice experiments (e.g. stated preference surveys) where individuals are shown hypothetical scenarios 
regarding travel time variability (and hence reliability) on a travelled route. Determining the WTP estimate is beyond the scope of this 
report. This report focusses on the second term in Equation 1.1 (the change in one SD of travel time) by developing methodologies to 
determine travel time variability which eventually contributes to computing travel time reliability for a given alternative. 
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2 Literature Review 

This section reviews the state-of-the-art in the field of travel time variability studies at a link and route level 
(Section 2.2 and Section 2.3 respectively). The section also discusses the approaches to include travel time 
reliability into the modelling framework of the strategic transport models and assess its implications on the 
network assignment (Section 2.4). Section 2.5 summarises the literature review by identifying appropriate 
methodologies from the several candidate approaches reviewed. The full literature review is attached as 
Appendix A1. 

The main findings from the review are as follows: 

Link Travel Time Variability  

 The eleven link models reviewed have presented large variations in terms of model structures and 
parameters included, and their forecast travel time variabilities are inconsistent to a large degree, 
particularly when congestion levels are high. 

 Travel time variability is dependent on a congestion index, link length and road types along a route. Travel 
time variability is directly related to the congestion index and is indirectly related to link length. Higher 
standard road types result in less travel time variability. 

 Models that estimate the CoV are recommended (vis-à-vis SD of travel time). 

 The congestion index is better represented as the ratio of mean travel time and free flow travel time (vis-
à-vis V/C ratio). 

Route Travel Time Variability  

 Route travel time variability is best estimated by aggregating the link travel time variability, but the 
correlations of link travel time also need to be accounted for. 

Network Travel Time Variability  

 There are several proposed network assignment techniques that incorporate travel time reliability. While 
these techniques have been numerically demonstrated, their practicality for real-world application has not 
yet been tested. The difficulty arises from the issue that link SD of travel times are not additive and 
traditional techniques of network assignment rely on link costs to be additive. 

2.1 Understanding Travel Time Variability and Reliability 

Fosgerau et. al (2008) proposed that travel time (TT) is a summation of three constituent terms, namely the 
free flow time (TTff), systematic delay (TTsys_delay) and the unexplained delay (TTunexp_delay). Equation 2.1 gives 
the expression to compute travel time on a given link in a network. The free flow travel time corresponds to the 
time under uninterrupted traffic flow on a link. Free flow travel time conditions are characterised by less traffic 
on link, generally observed between late nights and early mornings, where a driver can traverse the link 
cruising at free flow speed. Since the link length and free flow speed are defined for a link, the free flow travel 
time is also fixed for that link. The systematic delay (TTsys_delay), which is additional travel time, occurs due to 
known sources of interrupted traffic flow such as presence of traffic lights, pedestrian crossings, and even 
systematic patterns in travel demand (e.g. lesser traffic on weekends in general). The unexplained delay 
(TTunexp_delay) arises due to events such as traffic incidents and random demand fluctuations. It is the last two 
components, and the third component in particular, which heavily impacts on travel time to on a link across 
multiple days. 

𝑻𝑻 = 𝑻𝑻𝒇𝒇 +  𝑻𝑻𝒔𝒚𝒔_𝒅𝒆𝒍𝒂𝒚 +  𝑻𝑻𝒖𝒏𝒆𝒙𝒑_𝒅𝒆𝒍𝒂𝒚 [EQ 2.1] 
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Travel time variability has been defined as the distribution/spread or dispersion of travel times over a journey 
and over time (Osterle et al., 2017). Although a simple concept, MRWA (2016) and PIARC (2019) found that 
there is no global standard or industry agreed definition of variability. The frequency and magnitude of travel 
times are important considerations when evaluating travel time variability. According to Osterle et al. (2017), 
most travel time variability studies have investigated day-to-day changes in travel time and have expressed 
travel time variability as the random variation in travel time.  

On the other hand, travel time reliability, as noted by Moylan et al. (2018), has been introduced using several 
definitions in the literature. In the context of transport, travel time reliability is used to describe how certain 
the travel time is on a journey. Travel time variability is a good measure of travel time reliability and is typically 
used by transport agencies. Travel time reliability is then calculated as a statistical measure using travel time 
variability (Austroads, 2011a). 

Moylan et al. (2018) asserts that the terms of travel time reliability and travel time variability have, at times, 
been used interchangeably in past studies such as Batley et al. (2008) and Austroads (2011a). While the two 
terms are quite similar, there exist slight nuances between the two. Travel time reliability is the approximate 
consistency in travel times, for a defined road section or origin/destination, during a similar time-period under 
specific land use and road network settings. On the other hand, travel time variability represents the 
fluctuations in travel times (on a link or route) over a period of days. While achieving travel time reliability 
relates to the objective of users in planning their travels, travel time variability is the consideration of travel 
times in assisting their plans. In other words, travel time reliability is mainly used in the planning stage of a 
project while travel time variability either aids in or is a consequence of the former. Figure 2-1 shows the inter-
relationship between the two concepts, that is travel time reliability and travel time variability. For a given state 
of the transport network, there could be travel time variations at link, route and network-wide levels. Such 
variability influences how individuals travel, and thus travel time reliability accounts for a monetary component 
in the economic appraisal process to identify the best transport project. Once, the project has been 
implemented, it again results in a new set of travel time variability, which ideally should be less than the before 
project implementation case.  

Figure 2-1: Inter-relationship between travel time variability and reliability 

 



 

Road Reliability Measurement –Research Report 5 

2.1.1 Factors Affecting Travel Time Variability 

There are several factors identified in the literature which affect travel time variability (Austroads, 2011a; Hyder 
et al., 2008). An understanding of these factors can help in understanding how a change in one factor affects 
the overall travel time variability. This in turn may be used in a forecasting model and/or to estimate the 
changes in reliability (as expressed in terms of variability) due a proposed project or policy on the road network. 
The factors are listed below: 

 inadequate roadway capacity (resulting in a volume/capacity ratio (V/C) greater than 1)   

 traffic incidents  

 work zones and weather 

 traffic control devices or traffic management systems 

 special events 

 vehicles stopping for non-traffic reasons  

 demand fluctuations 

 duration of peak period 

 number of alternative routes available 

 driver behaviour  

 types of road users 

 sharing road space 

 on street parking 

 variability over the survey period. 

A study by Matsouki (2007), as quoted in Austroads (2011a), found that the main sources of travel time 
variability were: bottlenecks (40%), traffic incidents (25%), bad weather (15%), work zones (10%), poor signal 
timing (5%) and special events/others (5%). The above values can potentially be used for predicting the effect 
of interventions addressing these factors on variability. It is worth mentioning at this point that it is beyond the 
scope of this project to determine the individual contribution for each identified factor towards travel time 
variability. 

The focus of this report is on developing a predictive model using road capacity and the related congestion 
effects on travel time variability (and hence reliability). The limitations or the lack of availability of the data 
would affect the ability to assess other applicable factors and the extents of applicability of the model. As far 
as practicable, effects that may affect significant demand fluctuations like public holidays and weekends were 
considered and controlled.  

2.1.2 Measuring Travel Time Variability 

Several models have been developed in the past to measure travel time variability (Austroads, 2011a; Moylan 
et al., 2018; MRWA, 2016; PIARC, 2019). The proposed models are as follows: 

 Mean variance model 

 Scheduling model 

 Mean lateness model 

 Options approach 

 Vulnerability approach 

 Other general models3.  

 

3 For a full description see Section 4, Austroads (2011a) 
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A scoping study regarding valuing road travel time and reliability was undertaken to inform the ATAP 
Guidelines Steering Committee (TIC 2016). The study considered both the mean–variance and scheduling 
approaches and recommended the adoption of the mean–variance approach over the scheduling approach. 
The justification behind this recommendation was that the mean–variance approach results in a single unit 
value of reliability that represents the marginal value of one SD of travel time, whereas the scheduling approach 
requires separate values for being early and late. Although the scheduling approach is conceptually preferred 
in behavioural models that predict the disutility associated with travel time variability, the study noted that it 
would be more complicated to apply because it required knowledge of travellers’ preferred arrival times. 

This report has followed the scoping study’s recommendation and adopts the mean–variance approach for 
practical applications in Cost Benefit Analysis (CBA) and toll road patronage forecasting. Applying this 
approach usually involves quantifying variability in terms of the SD of travel time. 

Austroads (2011a) identifies different metrics to measure travel time variability for urban and rural road projects 
which have been used internationally. Moylan et al. (2018) extended this work by classifying these measures 
into three categories. Table 2-1: shows the classification of the metrics for travel time variability along with the 
description of each metric. The earlier scoping study recommended the travel time window metric, which 
measures variability as SD of travel time, as the basis of valuing travel time reliability (TIC 2016). Thus, this 
project aligns with the recommendation to develop an estimation method for determining the SD of travel time 
on a link and route level. Furthermore, this project also demonstrated the use of network modelling techniques 
to estimate the SD of travel time between an origin and destination. 

Table 2-1: Measures of travel time variability 

Category Name Description 

Statistical 
range 
measures 

Travel time 
window 

Travel time window is the range of travel time to within one SD from mean travel 
time. 

Variability is measured as the SD of travel time. 

Coefficient of 
variation 

Coefficient of variation is the ratio of SD and mean. The coefficient of variation is the 
fractional uncertainty in travel time. 

Variability index Travel time variability is measured as the range of travel time which is calculated as 
the difference between the 95th and the 5th percentile travel time.  Travel time 
variability index is the ratio of range during peak period and the range during the off-
peak period.  

Width of travel 
time 

Width of travel time is the ratio of the difference between the 90th percentile and 50th 
percentile travel time and the 50th percentile travel time. 

Buffer 
measures 

Buffer time The buffer time is the amount of additional time which must be allocated to be 95% 
certain of achieving on-time arrival.  Buffer time is the difference between the 95th 
percentile and the mean travel time. 

Buffer time 
index 

The buffer time index is the ratio of the buffer time and the mean travel time. 

Planning time 
index 

The planning time index is the ratio of the 95th percentile travel time and the free flow 
travel time. 

Misery index Misery index is the ratio of the average of the 50th to 80th travel time and the mean 
travel time. 

Tardy trip 
measures 

Florida reliability 
statistic 

The Florida reliability statistic is the probability that travel time is greater than the 
mean travel time. 

On-time arrival On-time arrival is the proportion of trips that arrive within +10% of the mean travel 
time. 

Skewness 
measures 

Skewness 
statistic 

Skewness statistic gives a measure of how extreme travel times can get as a 
measure of travel time reliability. Skewness statistic is equal to the ratio of the 
difference between the 90th percentile and 50th percentile travel time and the 
difference between the 50th percentile and 10th percentile travel time. 

Source: Moylan et al. (2018) 
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2.2 Link Travel Time Variability 

A link is a continuous section of the entire road segment which facilitates movement of vehicles and depicts 
homogeneous physical and traffic characteristics (e.g. discontinuities such as going from three lanes to two, 
presence of a signalised intersection on a straight road, and connection between on/off ramps to motorway 
are all represented as separate links).  

Multiple links join to form a route connecting a given origin-destination pair which means that the travel time 
on a route is an aggregation of travel times on individual links. The literature review shows that several models 
have been developed to forecast the SD of travel time on links and routes. A list of these models is presented 
below. Readers can refer to Appendix A1 which presents a detailed discussion on each of models listed below. 

1. United Kingdom Model (UKM) 

2. Log-Linear Model (LLM) 

3. New Zealand Model (NZM) 

4. Unified Reliability Model (URM) 

5. Linear Model (LM) 

6. Length Standardised Linear Model (LSLM) 

7. Length Standardised Cubic Model (LSCM) 

8. Exponential Coefficient of Variation Model (ECVM) 

9. Power Mean Delay Model (PMDM-1) 

10. Polynomial Mean Delay Model (PMDM-2) 

11. Dutch Model (DM). 

Most of these models have been calibrated as route models, that is the travel time SD of a series of 
interconnected links instead of individual links. However, a few studies have indicated that link-level modelling 
is a better paradigm since it could take into consideration the dependencies among links. For example, route 
travel time represents the summation of its constituent link travel times. However, some links are correlated to 
one another, which cannot be identified from a single number representing route travel time.  

2.2.1 Comparison of Existing Link Models 

The criteria used to compare the models mentioned above is as follows: 

1. Consideration of the dependent variable in each model 

2. Review the influence of factors such as congestion index, link length, road types and limits of variability 

3. Conduct a standard numerical experiment using each of the models. 

The three criteria are discussed below. 

1. Consideration of the dependent variable in each model  

Table 2-2 presents a comparison of the models reviewed summarising the dependent and independent 
variables along with the upper and lower bounds of the former. The models have generally used either SD or 
Coefficient of Variation (CoV) as the dependent variable. 

While SD corresponds to the spread of travel time around the mean value, CoV is a normalised measure which 
is equal to the ratio of SD and the mean travel time on a link. The data collected for this study had link lengths 
ranging from below 100 m to over 10 kms. As link lengths vary across the network, an approach favouring a 
CoV might be preferred. The table also shows a majority of models leading to unbounded results, which implies 
that the estimated values of the dependent variable would be infeasible in reality.  
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Table 2-2: Variables and limits of the eleven existing models to estimate travel time variability 

S. 
No. 

Model 
Dependent 

variable 
Independent variable(s) included Limits of dependent variable 

1 UKM CoV 
 Congestion index specified as the ratio 

of mean and free flow travel time 

 Length of travel 

 Minimum = a 

 Maximum =  

2 LLM CoV 

 Congestion index specified as the ratio 
of mean and free flow travel time 

 Length of travel 

 Road type assigns different 
parameters 

 Minimum = a 

 Maximum =  

3 NZM SD 

 Congestion index specified as the ratio 
of volume (in terms of demand) and 
capacity 

 Road type assigns different 
parameters 

 Minimum = 0 

 Maximum = 1 

4 URM SD 
 Travel time 

 Length of travel 

 Minimum = a function of capacity, 
time-of-day and type of route 

 Maximum =  

5 LM SD  Travel time 
 Minimum = a 

 Maximum =  

6 LSLM 
SD per unit 
length 

 Unit travel time (that is inverse of 
speed) 

 Minimum = a 

 Maximum =  

7 LSCM 
SD per unit 
length 

 Unit travel time (that is inverse of 
speed) 

 Minimum = a 

 Maximum = peaks at a defined unit 
travel time then declines to 
negative values 

8 ECVM CoV  Congestion index specified as the ratio 
of mean and free flow travel time 

 Minimum = exp(a) 

 Maximum = peaks at a defined 
congestion index then declines to 
zero 

9 PMDM-1 SD 
 Congestion index specified as mean 

delay (that is difference between travel 
time and free-flow travel time 

 Minimum = a 

 Maximum =  

10 PMDM-2 SD 
 Congestion index specified as mean 

delay 

 Length of travel 

 Minimum = a 

 Maximum =  

11 DM SD 
 Congestion index specified as mean 

delay 

 Length of travel 

 Minimum = a and increases linearly 
with length 

 Maximum =  

Note: a, 0 and 1 are the calibration parameters which define the boundaries of the dependent variable  

2. Review of Influencing Factors 

The following independent variables from the literature have been reviewed with comments whether they will 
be the adopted variables for comparison in this report: 

1. V/C ratio: Volume is based on the measurement of vehicles ‘arriving’ from the analysis point. Volume from 
field data can only measure vehicles discharging or flow, but it cannot indicate upstream demand. Thus, 
the V/C approach in this section will use demand on arrivals rather than flow on departure. This enables 
V/C ratios greater than one to be tested on the 11 selected models. 
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2. Congestion Index (CI): The CI used for analysis in this report denotes a ratio of mean and free flow travel 
time  

3. Mean Delay: Mean delay is the difference between expected and free flow travel time. However, mean 
delay is length dependent, hence the use of mean delay does not differentiate between delays due to 
heavy congestion on a short link and moderate delays on a long link. Hence the application of mean delay 
as the CI has disadvantages. 

4. Link Length: A link is usually assumed to be homogenous, implying uniform CoV across the entire link. 
However, this assumption is not suitable as link length increases because various segments of the link 
behave in a less correlated manner, which tends to reduce the variability of travel time. Hence, longer link 
lengths tend to depict lower travel time variability. This report compares the models over a range of link 
lengths. 

5. Road Types: Different road types exhibit different characteristics on how the congestion index translates 
into travel time variability. Higher standard highways, particularly motorways, tend to exhibit less travel 
time variability compared to lower standard highways (e.g. arterials) during off peaks since greater road 
capacity enables travel at the posted speed limit. However, during AM and PM peaks, arterials are often 
heavily congested which contribute to a large travel time variability. Different model parameters are often 
determined for each road type.  

6. Limits of Variability: While all the reviewed models have defined lower bounds, it is only the NZM which 
has an upper bound to the travel time variability. By limiting the SD, the CoV would decline at higher 
congestion levels as travel time increases, while the SD stays constant beyond a certain point in the NZM.  
It is beneficial to constrain the models such that travel time variability does not yield unrealistically high 
values. However, it is more appropriate to constrain the CoV instead of the SD of travel time so that 
variability could be accounted for highly saturated long links. 

CI can be specified as a ratio of mean and free-flow travel time; mean delay or, as a ratio of volume (in terms 
of demand) and capacity. Variability of travel time increases with CI. Calibration based on volume is 
problematic because demand is not easily measurable. Volume data is measured using traffic counters which 
measure the realised flow. In undersaturated conditions, the realised flow is the same as demand. However, 
in saturated conditions, the realised flow is much less than demand due to effect of bottlenecks constraining 
flow. Travel time is measured either by probe vehicles, roadside detectors, or Bluetooth tagging. The measured 
and modelled travel times are consistent in both undersaturated and saturated conditions, hence the CI 
approach using the ratio of mean and free-flow travel time have advantage over the volume-based approach 
and is used hereafter throughout the report. 

3. Numerical experiment of each model 

A numerical experiment was also developed to compare the models reviewed above. Of these models, UKM 
and NZM had two variants each, that is UKM – UK version and UKM – Australian version and NZM – New 
Zealand arterial version and NZM – Sydney arterial version. Thus, 13 models were eventually compared in the 
numerical experiment 4.  

The numerical experiment represented a hypothetical scenario with the following characteristics:  

 Arterial highway route comprising 1 link 

 Speed limit: 80 km/h 

 Link length: 1 km 

 Capacity: 1,200 passenger car equivalent units (pceu) per lane-hr 

 Travel speed and CI (ratio of mean to free flow travel time) are estimated, using the Bureau of Public 
Roads model (BPR, 1964).  

 

4 It is noteworthy to mention that the UKM and LLM had a similar function form, i.e. one can deduce LLM from UKM by taking the 
logarithm on both sides. As a result, the two models are expected to produce identical results in the numerical experiment. 
Nonetheless, both the models are still considered in this exercise as they have been used in previous studies. 
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The findings from the numerical experiments are summarised below 5: 

 The predicted SD of travel time for the LM and DM for a V/C less than 1 is inconsistent with other models 
and common understanding  

 NZM predicts a constant SD of travel time for higher V/C, LSCM and ECVM forecast decreasing values 
with increasing V/C, and other models reported increase in SD values with increasing V/C ratio 

  A majority of models predict decreasing CoV values as V/C increased 

 DM and LSCM forecasted negative CoV values for a certain range of V/C 

 UKM, URM and LLM displayed higher than anticipated rate of increase for CoV and SD of travel time for 
V/C values above 0.8. 

In summary, the literature review and the numerical experiment indicate that using CoV as the dependent 
variable provides a better model fit when compared to SD forecasting models. The estimated CoV is then 
converted back to SD to measure the monetary cost of travel time reliability (Equation 1.1) to be used during 
the CBA. Furthermore, the literature review shows that some link models can forecast ever increasing values 
of CoV as the V/C or the CI increases (refer to Table 2-2). In other words, SD of travel time continues to 
increase as roads become more congested. This mathematical aspect, however, is not consistent with the 
real-world traffic phenomenon observed in general where travel time variability tends to change at a much 
lower rate beyond a certain threshold. It is worth noting at this point that this rate of change in the SD of travel 
time can be positive (that is increasing) or zero (that is constant). Thus, both potential options need to be 
explored using two types of trendlines: 1) where the rate of increase in SD of travel time is gradual (that is no 
cubic or exponential forms), and 2) where the SD of travel time stabilises and takes the shape of a plateau 
beyond the threshold value. The findings from the numerical experiment augment some of these observations 
from the literature review and the real-world traffic flow phenomenon. 

Table 2-3 summarises each of the eleven models based on the findings from the literature review and the 
numerical experiment and identifies the models which were found appropriate for further consideration.  

Table 2-3: Summary of the link models considered  

Model Review 
Recommendat
ion 

UKM 

 For values of b (the exponent parameter) greater than 1, the model forecasts 
unrealistic growth in SD of travel time 

 Does not have a limiting maximum threshold for forecasted CoV, thus susceptible 
towards over-estimating travel time reliability benefits 

 However, the hypothesis of geometrically increasing CoV could be tested on field 
data, thus shortlisted this model for further consideration. 

For further 
consideration 

LLM 

 Forecasts an exponential increase in SD of travel time at higher congestion which is 
unrealistic 

 Does not have a limiting maximum threshold for forecasted CoV, thus susceptible 
towards over-estimating travel time reliability benefits. 

Not for further 
consideration 

NZM 

 Predicts a sigmoid trend in SD of travel time as congestion increases, that is SD of 
travel time stabilises beyond a threshold value 

 The hypothesis of a constant SD of travel time at higher congestion could be tested 
on field data, thus shortlisted this model for further consideration. 

For further 
consideration 

URM 

 Travel time (independent variable) is not a good indicator for congestion. E.g. change 
in speed limit could also impact travel time 

 Does not have a limiting maximum threshold for forecasted SD of travel time, thus 
susceptible towards over-estimating travel time reliability benefits at high congestion 
levels. 

Not for further 
consideration 

 

5 Readers can refer to Appendix A2, Section 1 which presents the results of the numerical experiment. 
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Model Review 
Recommendat
ion 

LM 

 Travel time (independent variable) is not a good indicator for congestion. E.g. change 
in speed limit could also impact travel time 

 Its simple form does not account for the increasing rate of SD of travel time as the link 
approaches saturation levels, which is unrealistic 

 Tendency to over-estimate travel time variability at lower and underestimate at higher 
congestion levels. 

Not for further 
consideration 

LSLM 
 Uses travel time as independent variable which is not a good indicator of congestion 

 Limited flexibility to model the transition from lower to higher congestion. 

Not for further 
consideration 

LSCM 
 Uses travel time as independent variable which is not a good indicator of congestion 

 The cubic exponent leads to unrealistic drop in SD of travel time at higher congestion. 

Not for further 
consideration 

ECVM  Forecasts a zero CoV at higher congestion level, which is unrealistic. 
Not for further 
consideration 

PMDM-1 

 Uses mean delay as independent variable is not suitable as it is length dependent 

 Thus, unable to distinguish between delays due to heavy congestion on a short link 
and moderate delays on a long link 

 The logarithmic curve (that is the exponent parameter (b) less than one) gives a 
realistic estimate of SD of travel time 

 For larger values of b, the model forecasts exponential growth in SD of travel time 
which is unrealistic. 

Not for further 
consideration 

PMDM-2 
 Uses mean delay as independent variable is not suitable as it is length dependent 

 The cubic exponent is susceptible for unrealistic changes in SD of travel time. 

Not for further 
consideration 

DM 

 Functional form is weighted sum of linear trend and a log trend 

 The CoV could decrease at higher levels of congestion 

 The problem of predicting negative values of SD of travel time could be addressed by 
constraining the parameters to prevent it from returning negative values of SD of 
travel time 

 The model predicts declining CoV at higher congestion levels. 

For further 
consideration 

2.2.2 Selected Models 

The above exercise (literature review and numerical experiment) brought forward three link level models for 
further consideration namely, UKM, NZM and DM. Table 2-4 summarises the shortlisted models along with 
the justification behind their selection. It was proposed that these models would be compared with real-world 
data to determine the best fitting model. 

Table 2-4: Recommended three link models for analysis 

Model Predicted Modelled Behavior 

UKM Geometrically increasing CoV at higher levels of congestion. 

NZM Constant SD of travel time and sharply declining CoV at higher levels of congestion. 

DM 
The DM predicts that the CoV would decline at higher levels of congestion.  

The DM predicts a negative CoV value at certain CI ranges which implies its parameters would need to be 
constrained. 
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2.3 Route Travel Time Variability 

In travel time reliability modelling, all related parameters are link based, which are then aggregated to measure 
route performance. The impact of motorway on/off ramps, traffic signals, junctions and roundabouts will be 
considered at link level, that is, travel time and SD, and then reflected in the overall route performance. 

Regarding the modelling of route performance for CBA, the mean route travel time can be calculated as the 
sum of link travel times along the route. The SD of route travel time can only be aggregated from the link travel 
time SD, if the link travel times are uncorrelated (or independent). As some sources of variability, e.g. weather 
or high demand, impacts upon a wide section of links in the network, it is reasonable to assume that there is 
some level of correlation between link travel times that is if a link is experiencing congestion it is likely that 
nearby links are also experiencing congestion. The review identified two approaches to modelling route travel 
times, that is travel time-based models such as the UKM Route Model and Correlation Route Model (CRM). 

2.3.1 Travel Time-based Route Models 

Moylan et al. (2018) applied the UKM model to a route and expressed the UKM as shown in Equation 2.2 
along with Table 2-5 which gives the associated calibrated parameters. 

𝝈 = 𝒂𝒕𝒃𝒅𝒄 [EQ 2.2] 

Where: 

𝜎 = SD of travel time of route (in s) 
𝑡 = mean travel time of route (in s) 
𝑑 = distance of route (in km) 
a, b c = parameters 

UKM calibrates based on mean travel time, which is not a measure of congestion. Information about individual 
links such as the congestion index is lost because of the aggregation. Therefore, the application of the UKM 
to a route is not sensitive to congestion and it is suitable only for approximating the standard deviation of route 
travel time. The model is accurate only for the route used in its calibration and limited to the configuration of 
the route at the time of calibration. 

Table 2-5: Calibrated parameters of UKM 

Source Road Stereotype 
a 

(Constant) 

b 

(Travel time) 

c 

(Length) 

UK Department for 
Transport’s Transport 
Analysis Guidance, Moylan 
et al. (2018) 

General 0.0018 2.02 -1.41 

Sydney Highways  
(rCITI 2018) 

General (arterials & motorways) 0.0087 1.5245 -0.4488 

General by time-of-
day 

AM peak 0.0082 1.6349 -0.5926 

PM peak 0.7256* 0.7187 0.1626 

Interpeak 0.7245* 0.7144 -0.0098* 

Off-peak 0.0139 1.3166 -0.2129 

Arterial General 0.0001 2.4917 -1.5383 

Arterial by type of 
route 

Inner ring 1.97607×10-7 3.4058 -2.7373 

Middle ring 9.92653×10-6 3.1107 -2.2848 

Outer ring 4.33235×10-6 2.7885 -1.0203 

Arterial by time-of-day 

AM peak 0.0003 2.3857 -1.4027 

PM peak 0.0166 1.5081 -0.6501 

Interpeak 0.0419 1.3667 -0.7839 

Off-peak 0.0002 2.3043 -1.3974 

Motorway General 1.03251×10-7 4.2451 -2.7198 

Motorway by type of 
route 

Inner ring 8.82934×10-8 4.4697 -3.3849 

Middle ring 2.99007×10-7 3.6758 -1.4987 
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Source Road Stereotype 
a 

(Constant) 

b 

(Travel time) 

c 

(Length) 

Outer ring 6.83866×10-14 7.8569 -6.0742 

Motorway by time-of-
day 

AM peak 1.35447×10-6 3.6946 -2.3010 

PM peak 0.0002 2.5966 -1.3939 

Interpeak 1.73597×10-9 5.3052 -3.7987 

Off-peak 4.05581×10-10 5.4423 -3.6477 

Note: * indicates that the parameter was not statistically significant. 

2.3.2 SD of Travel Time Based Route Model 

The SD of travel time based route model involves forecasting the link travel time SD (using the models 
discussed in Section 2.2) followed by combining the link travel time SDs to form the travel time SD for a route. 
This method has been widely used in the previous works reviewed earlier in Section 2.2. There are two 
approaches for SD of travel time-based route models, either assuming that there is (i) a correlation between 
links or that (ii) the travel time variability of each link is uncorrelated. 

The first approach, shown in Equation 2.3, referred to as the Correlation Route Model (CRM), was 
recommended by Nicholson (2015) to include consideration of travel time correlation between all links within 
a route. Variance of route travel time is defined as the sum of variance of link travel time and the sum of 
covariance between any two links’ travel time. This is in fact the most accurate measure of variance between 
datasets by using the variance sum law from statistical theory. However, this model increases the level of 
complexity in the variance calculation and it is heavily reliant on available data to determinate the correlation 
coefficient of travel time between any two links. Nicholson (2015) also developed Equation 2.5 to estimate the 
correlation coefficient in order to simplify the calculation. 

𝝈𝒓
𝟐 =  𝝈𝒊

𝟐

𝒏

𝒊ୀ𝟏

+ 𝟐   𝝆𝒊,𝒋𝝈𝒊𝝈𝒋

𝒏

𝒋ୀ𝒊ା𝟏

𝒏ି𝟏

𝒊ୀ𝟏

, 𝑖 < 𝑗 [EQ 2.3] 

Where: 

𝜎
ଶ = variance of travel time of route with n number of links 

𝜎 = SD of travel time of route 

𝜎
ଶ  = variance of travel time of link i 

𝜎  = SD of travel time of link i 

𝜎  = SD of travel time of link j 

ρ୧,୨ = correlation coefficient of travel time between links i and j 

The second term of Equation 2.3 consists of 
మ

ଶ
− 𝑛 terms, the upper triangular part of an n × n matrix excluding 

the n terms along the diagonal. 

The second approach, as shown in Equation 2.4 assumes that the estimate of trip reliability for a journey could 
be built up using individual variability on links and junctions (measured in terms of variance) and that there is 
no correlation effect in the variance between the links and junctions (Osterle et al., 2017). The NZTA Economic 
Evaluation Manual also assumes that travel times are independent, thereby the correlation coefficient is 
assumed to be zero (NZTA, 2013). If the correlation coefficient is zero, then Equation 2.3 simplifies to Equation 
2.4. 

𝝈𝒓
𝟐 =  𝝈𝒊

𝟐

𝒏

𝒊ୀ𝟏

 [EQ 2.4] 
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Moylan et al. (2018) determined that expressing the SD of route travel time as Equation 2.4 would result in 
under-estimating SD of route travel time by 43.5% with their field data. Nicholson (2015) using field data 
estimated that the contribution of the variance term in (that is first term in Equation 2.3) is around 9% or the 
covariance term is roughly 10 times greater (that is second term in Equation 2.3). Therefore, link travel times 
are not independent, and correlation needs to be accounted for when calculating the SD of route travel time. 

Nicholson (2015) used field data of Tokyo Metropolitan Expressway to identify the relationship between links 
travel time and found that the correlation coefficient of link travel time between any two links varies but 
averages around 0.5. He noted that the correlation coefficient tended to decline with increasing separation 
between links as shown in Figure 2-2. 

Figure 2-2: Correlation coefficient () of link travel times versus link separation (Δ) 

 

Note: The correlation coefficient is between first link on the route with the next 38 downstream links along the route.  
Separation (Δ) is the number of links from the first link on the route. The links are 300 ± 50 m in length. 
Source:  Nicholson (2015) 

Nicholson (2015) proposed Equation 2.5 to estimate the correlation coefficient. Separation in Equation 2.5 is 
the number of links between two links along a route wherein link lengths are approximately uniform that is, 300 
± 50 m. 

𝝆𝒊,𝒋 = 𝒆𝒙𝒑(𝒂∆) [EQ 2.5] 

Where: 

𝜌, = correlation coefficient of travel time between links i and j 

∆= separation, number of links (link lengths ≈ 300m) 

𝑎 = parameter 

The use of the CRM is considered more accurate, hence is a more appropriate method of estimating route 
travel time. Travel time-based route models do not have the necessary generality and sensitivity to be adopted 
in a guideline. The CRM can take advantage of link-based models to aggregate the route travel time SD of 
travel time. The only complication with the CRM approach is the need to calibrate a set of correlation coefficient 
models (CCM, that is Equation 2.5). Preliminary analysis has demonstrated that it is necessary to account for 
the correlation of links. With a set of calibrated parameters for the CCM, the application of the CRM (that is 
Equation 2.3) is straightforward and would result in higher quality estimates. 

It is worth noting that the correlation coefficient model relies heavily on calibration using field data and results 
can be significantly different depending on the road environment. It is essential to test the model to determine 
whether it can be generalised for different networks or regions. 
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2.4 Travel Time Variability in Network Modelling 

Network models that measure road network performance are tools used by practitioners to develop strategic 
infrastructure plans and prioritise transport investment. Accordingly, considerable efforts have been made to 
enhance the realism of these network models, especially in the context of improving traffic assignment 
methodologies. The traffic assignment process concerns the allocation of travel demand on feasible routes for 
each origin-destination pair within a road network model. This allocation is governed by factors which affect 
travellers’ route choice such as travel time, cost as well as travel time reliability. 

There is an extensive body of literature concerning the incorporation of travel time reliability within network 
modelling approaches. Taylor (2013) and Uchida (2014) provide comprehensive documentation of the 
research history while recent papers by Gupta et al. (2018) and Mishra et al. (2018) discuss the application of 
travel time reliability within the transport planning appraisal process.  

Current models incorporate travel time reliability within network models in two ways: 

 traffic assignment methodologies which can measure reliability 

 traffic assignment methodologies that include travel time reliability metrics within the route choice process 
(Taylor, 2013, Sun et al., 2019). 

2.4.1 Review of Existing Approaches 

Historically, the network models focused exclusively on reliability measurement, such as Asakura and 
Kashiwadani (1991) which solved the User Equilibrium for numerous origin-destination (O-D) demands 
sampled from a normal distribution to estimate the SD of travel time for links within a network. However, with 
the development of assignment methodologies such as Stochastic User Equilibrium (SUE) (Prashker and 
Bekhor, 2004), Strategic User Equilibrium (StrUE) (Dixit et al., 2013) and a plethora of dynamic traffic 
assignment techniques that integrate uncertainty within the assignment process itself, models are able to both 
measure travel time reliability and incorporate it within the assignment of traffic. For example, Strategic User 
Equilibrium (StrUE) probabilistically assigns traffic to the network as it accounts for the variability in O-D 
demands which result in variations of travel time. The modelling approach can then measure reliability directly 
from the modelled link proportions as the variance of link travel time. 

Sun et al. (2019) provides a categorisation of route choice equilibrium-based traffic assignment models which 
account for travel time reliability summarised in Table 2-6:. Travel time reliability models relevant to the metrics 
identified earlier in the report focus on the ‘mean-variance’ approach where link cost functions or route decision 
rules consider either the variance, SD of travel time or percentile of travel time as a component. This mean-
variance approach will be pursued in more detail within the models developed in the project. 

Table 2-6: Categorisation of network models which incorporate travel time reliability 

Type of 
model 

Description Examples 

Mean-
variance 
approach 

These traffic assignment models include 
either expected travel time, travel time 
variance or SD of travel time to estimate 
the link/route travel cost.  Travelers choose 
routes to minimise this travel cost (to avoid 
late arrival) – which could be interpreted as 
a travel time budget. These models may 
account for uncertainties in supply, 
demand or both. 

 Lo et al. (2006) (Travel time Budget – TTB Model) 

 Wu (2015) (TTB Model) 

 Shao et al. (2006) (TTB Model) 

 Nie (2011) (Percentile Travel Time Model) 

 Chen et al. (2011) (Mean excess traffic equilibrium) 

 Dixit et al. (2013) (StrUE) 

 Clark and Watling (2005) (SUE) 

Game-
theoretic 

These models assume that travelers 
choose routes to avoid link failure (avoid 
unreliability) and that disruptors maximise 
the damage to the network.  The traffic 
assignment methodology is then 
formulated as a Cournot-Nash game. 

 Szeto et al. (2007) 
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Type of 
model 

Description Examples 

Prospect-
theory based 

Travelers choose the route with the largest 
prospect value to complete a journey. 
Travelers are risk averse in positive (gain) 
scenarios and risk prone in negative (loss) 
scenarios. 

 Gao et al. (2010) 

 Chorus (2012)  

 Li et al. (2016) 

Recent research by Gupta et al. (2018) and Mishra et al. (2018) present the integration of travel time reliability 
in regional travel models with practical case studies. Gupta et al. (2018) presents a study based on Phoenix, 
Arizona. The key methodological contribution surrounds the manipulation of speed and volume data to develop 
a reliability measure that guided path generation in a traffic assignment process. This was extended to define 
O-D reliability measures constructed from the link-level and route-level reliability measures, including the SD 
of travel time. The paper confirms recent literature from Moylan et al. (2018) that SD of travel time is not 
additive, and it is important to account for correlations between links along a route. 

Similarly, Mishra et al. (2018) also develops an OD based reliability measure which was integrated with the 
Maryland State-wide Transportation model to find the value of reliability savings by improving road links within 
the network. The paper proposed a methodology to measure the value, forecast and incorporate reliability in 
the transport planning process and can serve as a possible template for the work undertaken in this research 
study. 
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3 Methodology 

This section presents the methodology adopted for further consideration based on the findings from the 
literature review section. Section 3.1 discusses the methodology adopted for link travel time variability and is 
compared with the models shortlisted in sub-section 2.2.2. Section 3.2 presents the modelling approach to 
determine route travel time reliability, which also involves the link model. Section 3.3 presents two methods to 
model network level travel time variability and discusses the merits and demerits for each method.  

A link is the fundamental building block in a road network which is subjected to day-to-day travel time 
fluctuations. Thus, sub-section 3.1 emphasises more on the link-level travel time variability modelling which is 
then contributes to the calculation of more macroscopic elements. For example, the CRM adds the travel time 
variability of individual links forming a route along with the covariances which exist due to interdependencies 
among links.   

3.1 Modelling Link Travel Time Variability 

As discussed earlier in Section 2, the three shortlisted models, UKM, NZM and DM, were found to have some 
shortcomings (refer to sub-section 2.2.1). Thus, a fourth model, referred to as the ATAP link Model was 
formulated and compared with the other three models. The ATAP link model addressed some of the limitations 
associated with the other models such as: 

 It has a ceiling for the maximum CoV value, where UKM does not. The lack of a constraining maximum 
coefficient in the model structure limits the UKM in modelling the sharp increases in CoV at near saturation 
and at the same time reduces the over-estimation SD of travel time at high levels of congestion.  

 It leads to a gradual increase in CoV value rather than a decreasing CoV as the congestion index value 
increases. The NZM predicts a nearly constant SD of travel time at much higher levels of congestion. The 
NZM is unlikely to produce travel time reliability benefits for any interventions at high congestion levels.  

 The use of mean delay as its measure of congestion in the DM was problematic as the SD of travel time 
was length dependent. The DM could not differentiate between delays due to heavy congestion on a short 
link and moderate delays on a long link. Its functional form could not accurately predict SD of travel time 
values at low congestion levels and results in an unrealistically low (or even negative) value.  

3.1.1 ATAP Link Model  

Equation 3.1 gives the formula for the ATAP link model.   

𝑪𝒐𝑽 = 𝒂 ቈ
(𝑪𝑰 − 𝟏)

𝑪𝑰


𝒃

 ∀  𝑪𝑰 ≥ 𝟏 
[EQ 3.1] 

𝑳𝒏(𝑪𝒐𝑽) = 𝑳𝒏(𝒂)  + 𝒃. 𝑳𝒏(
𝑪𝑰 − 𝟏

𝑪𝑰
)  ∀  𝑪𝑰 ≥ 𝟏 [EQ 3.2] 

Where: 

𝐶𝑜𝑉 = coefficient of variation, 
ఙ

்
 

𝐶𝐼 = congestion index = 𝑚𝑎𝑥 (1,
்

்
), where 𝑇 = 𝑚𝑒𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒, 𝑇 = 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 

a = calibration parameter that sets the upper limit of CoV,  a | a > 0 

b = calibration parameter that determines the rate at which CoV approaches the maximum, b | b ∈ (0, 1) 
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The mathematical formulation of the ATAP link model (Equation 3.1) resembles that of an exponential curve. 
As per definition, the Congestion Index, which is the ratio of prevailing and free flow travel time, ideally could 
not be less than one (assuming drivers do not indulge in over-speeding beyond the free-flow speed). Thus, an 
exponential curve helps in modelling the scenarios when the CI is greater than or equal to one, with the outliers 
being the scenarios where CI is less than one. The model gives a minimum CoV of zero when the CI is equal 
to one and then increases at a gradually diminishing rate for higher CIs. This functional shape is considered 
consistent with real-world traffic.  

Equation 3.1 can be transformed by taking a natural logarithm on both the sides, which is shown in Equation 
3.2. The benefits are that the log-log model, being linear, allows for an easy calibration using the linear 
regression tool available in MS-Excel (and other statistical packages), thus making it practitioner friendly. 
Secondly, using a log-transformed variable mimics the law of diminishing returns which implies slower rate of 
increase at higher variable values. For example, while a CI of 10 can be considered high, Ln[(CI-1)/CI] equates 
to -0.105 which greatly compresses the spread in the variables. Lastly, from a real-world standpoint, the CoV 
value is expected to follow the law of diminishing returns, that is the travel time variability reduces as at higher 
traffic congestion levels (since traffic movement is significantly slower). All these reasons favour the model 
calibration using a log-transformed model (Equation 3.2) as it would facilitate better model goodness-of-fit.   

3.1.2 Comparing the ATAP Link Model and other Shortlisted Models  

The four models, that is, UKM, NZM, DM and the ATAP link model were again developed for the same 
numerical experiment environment discussed earlier in sub-section 2.2.1. Readers can refer to Appendix A2, 
section 2 which presents the results from this numerical experiment. Some of the findings from the numerical 
experiment have been summarised below: 

 Our study both theoretically and using field data concluded that, at the link level, travel time SD is length 
dependent while travel time CoV is length independent 

 Numerical analysis in Appendix 2.2 compared those models and found only UKM-Australia and ATAP 
model matched the conditions that travel time SD is length dependent and travel time CoV is length 
independent 

 The ATAP link model shows a reasonable curve6 for both the CoV (a stable value at higher CI) and the 
SD (increasing steadily with CI) 

 The ATAP link model has a good fit7 with the trendline observed in the NetPReS data. 

Based on the analysis and comparison along with the advantages listed above, it was determined that the 
ATAP link model was the most appropriate method of measuring variability at a link level.  

The ATAP link model was calibrated and validated on the available real-world datasets, the results of which 
are presented in Section 4 of this report. The methodology for the calibration and validation of the ATAP link 
model is summarised below. 

Step 1:  Obtain the CI and CoV of travel time information separately for all arterial and freeway links in 
the Perth based NetPReS data 

Step 2:  Separately calibrate the ATAP link model on each of the arterial and the freeway data to 
determine the estimated parameters and the goodness-of-fit of the model. A nonlinear 
regression method is to be used for model calibration 

Step 3:  Visually validate the two ATAP models (for arterials and freeways) using other available 
datasets such as the Gold Coast Bluetooth dataset and the Sydney Google dataset 

Step 4:  Record findings and make recommendations 

 

6 A reasonable curve implies that the trendline is consistent with the traffic conditions witnessed in real-world. 
7 A good fit implies that the forecasted values (i.e. model trendline) closely follows the one formed using observed values. 
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3.2 Modelling Route Travel Time Variability 

In order to predict the SD of travel time on a route, the CRM presented in Equation 2.3 was applied: 
 (𝝈𝒓

𝟐 = ∑ 𝝈𝒊
𝟐𝒏

𝒊ୀ𝟏 + 𝟐 ∑ ∑ 𝝆𝒊,𝒋𝝈𝒊𝝈𝒋
𝒏
𝒋ୀ𝒊ା𝟏

𝒏ି𝟏
𝒊ୀ𝟏 , 𝑖 < 𝑗).  

The CRM model is comprised of two sub-models, the ATAP link model and the Correlation Coefficient Model 
(CCM), each of which was calibrated using the entire NetPReS dataset available for analysis. It is important 
to note that the modelled route travel time variance, that is 𝝈𝒓

𝟐, is estimated as a summation of the variances 
of the constituent links (an output from the ATAP link model) along with the total travel time variances due to 
correlations among the links (an output from the CCM). The sub-models were calibrated using the NetPReS 
link information while the validation of the resulting CRM was conducted using the NetPReS route dataset. 

The validation of CRM required comparison of the modelled route travel time variance (𝝈𝒓
𝟐) with the measured 

route travel time variance which was calculated as adding the individual link travel times to determine the route 
travel time for a given time-period and day, followed by calculating the variance of route travel times across all 
working days, excluding public holidays, in a month. 

In the case where the correlation coefficient (ρ) of travel time between the links is not available, Equation 2.5 
(𝝆𝒊,𝒋 = 𝒆𝒙𝒑(𝒂∆)) can be used to estimate the value of the correlation coefficient.  

Equation 3.3 shows an adaptation of Equation 2.5 where the number of separating links has been replaced 
with distance (midpoint to midpoint) between two links. This transformation is expected to yield similar results 
as the two quantities are positively correlated to one another. The latter quantity makes the application of the 
equation quite easy and computationally straightforward, which is why it has been adopted.  

𝝆𝒊,𝒋 = 𝒆𝒙𝒑(𝒂𝑳) [EQ 3.3] 

Where: 

𝜌, = correlation coefficient of travel time between links i and j  

𝐿 = distance between the midpoints of two links (in km)  

a = parameter 

A correlation analysis was conducted to test the validity of Equation 3.3 against the real-world data. Readers 
can refer to Appendix A4 which presents the results from the route correlation analysis. It was observed from 
the analysis that the exponential functional form given by Equation 3.3 resulted in a poor model fit8 when 
applied on the Perth dataset. Thus, a new functional form was proposed to estimate the correlation coefficient 
(ρ୧,୨) which is presented in Equation 3.4.  

𝝆𝒊,𝒋 =  𝑴𝒂𝒙[𝟎, 𝒂. 𝐋𝐧(𝐋) + 𝐛] [EQ 3.4] 

Where: 

𝜌, = correlation coefficient of travel time between links i and j where i < j 

𝐿 = distance between the midpoints of two links (in km) 

a, b = parameters 

 

8 A poor model-fit implies that the exponential trendline did not quite pass through the middle of the observed datapoints. In other words, 
the exponential trendline looked a bit skewed on the Perth dataset.   
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This study focussed on the impact of link distance on the travel time correlation between the links in general. 
The data includes observations with negative correlation which are included in regression to fit the curve. The 
fitted curve forecasts a negative correlation for higher values of L. Examination of the exact causes of negative 
correlation was out of study scope, however the initial investigation suggested that it was more likely to be 
attributed to the geometrical settings, bottleneck effects or other causes rather than distance between links. It 
is recommended for future study to fully investigate the factors affecting travel time correlation between links 
and further enrich Equation 3.4 by incorporating additional independent variables into the function. 
Equation 3.4 has been written to exclude negative correlations, and this form should be used in practical 
applications (as negative correlations due to longer mid-distance does not make sense). 

Once the correlation coefficient (ρ) is determined, it can then be used in Equation 2.3 to calculate the travel 
time variability on a route. The calibration methodology for the route level travel time variability modelling is 
summarised below: 

Step 1:  Calibrate the CCM (Equation 3.4) by linear regression of correlation coefficients (including 
negative values) against the natural logarithms of distances between the midpoints of links. 
Summarise the calibrated parameters, statistical significance and the goodness-of-fit of the 
model  

Step 2:  Calculate the variance of route travel time using the full NetPReS data on Equation 2.3 that is,  
𝜎

ଶ = ∑ 𝜎
ଶ

ୀଵ + 2 ∑ ∑ 𝜌,𝜎𝜎

ୀାଵ

ିଵ
ୀଵ , where 𝜎

  is determined using the ATAP link model and 
𝜌, is determined from Step 1   

Step 3:  Calculate the sum of the instantaneous link travel times as route travel time and measure the 
day-to-day SD of route travel time, σ  using the NetPReS data 

Step 4:  To validate the proposed CRM, compare the SD of route travel time predicted from Step 2 
against measured SD of route travel time from the NetPReS data  

Step 5:  Record findings and make recommendations 

The assumption of expressing the route travel time as the instantaneous sum of link travel time was examined 
by Moylan et al. (2018) and it was found to be accurate to within 4% on average and there is a tendency to 
overestimate route travel time particularly in congested periods and long routes. The loss of accuracy is 
thereby relatively small in relation to the benefit of simpler calculation. 

3.3 Modelling Network Travel Time Variability 

The literature review highlights several approaches to account for travel time reliability within a road network 
performance assessment (refer to Section 2.4). This project was built from the studies by Gupta et al. (2018), 
Mishra et al. (2018), Dixit et al. (2013) and Moylan et al. (2018) to test two methodological approaches, given 
below, that incorporate travel time reliability into strategic network modelling:  

1. Inclusion of a reliability metric (SD of travel time) within the link cost function for the network accounting 
for the additive properties between links and routes of the network. 

2. Application of the Strategic User Equilibrium (StrUE) approach which inherently accounts for SD of travel 
time as a variable within the assignment process. 
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3.3.1 Inclusion of a Reliability Metric 

The first method can be readily adopted in traditional network assignment techniques (such as User 
Equilibrium (UE)), but would require a simplifying assumption on the estimation of route travel time SD. This 
approach, referred to as the Approximated Route Standard Deviation method (ARSD), assumes that the route 
travel time SD can be approximated by Equation 3.5. The key difference between the ARSD and the CRM 
(Equation 2.3) is that it excludes travel time correlation between all links within a route (which is represented 
by the second term on the right-hand side of Equation 2.3). While this approximation is not sufficient for 
estimating route travel time SD, it will greatly simplify the calculation involved in determining network 
equilibrium. The route travel time SD can be estimated using more accurate models post route assignment 
(that is Equation 2.3, Equation 3.1, and Equation 3.4).  

The ARSD approach is a new approach which was proposed for consideration in this project. Readers can 
refer to Section 3 of Appendix A2 to get an understanding of the magnitudes of the correction factor (γ) as the 
correlations among links and their lengths vary. 

𝝈𝒓 ≈ 𝜸  𝝈𝒍 [EQ 3.5] 

Where: 

𝜎 = SD of travel time on route 

𝜎 = SD of travel time on links 

γ = correction factor 

3.3.2 Proposed Network Modelling Application using StrUE 

In a network modelling context, travel time reliability can be incorporated exogenously by measuring the 
consequent travel time variability over several scenarios, or endogenously by accounting for travel time 
reliability within the traffic assignment methodology. To realistically capture the concept of travel time reliability 
within a transport system, it is important to incorporate the value of reliability within a traveller’s decision-
making process to evaluate the impact on route choice and the emergent expected travel times and variability. 
Accordingly, endogenous approaches9 to modelling travel time reliability within strategic frameworks provide 
the greatest realism when accounting for travel time reliability because it implicitly accounts for travel time 
reliability because of uncertainty in demand or capacity and its impact on route choice. At its core, the main 
cause for unreliability is due to stochasticity in the demand or capacity10. StrUE explicitly accounts for this 
stochasticity in demand and capacity, while the behavioural model accounts for the preferences over travel 
time and reliability to evaluate the network impact. 

An approach that has been tested within this project is the StrUE traffic assignment formulation (Dixit et al., 
2013). StrUE is a novel formulation that accounts for the variability that exists in road networks while still 
maintaining the beneficial properties such as consistency and convergence of traditional traffic equilibrium 
models. StrUE considers that travellers recognise the variability in the system, in terms of road capacity, 
demand and travel time and rationally chooses routes while weighting the expected travel time and its variance. 
A summary of the formulation of StrUE is presented below:  

StrUE is defined such that "at Strategic User Equilibrium all used paths have equal and minimal generalised 
cost over expectation and variability of network demand".  

StrUE assignment relies on the following user behavioural assumptions: 

 

9 Endogenous approaches imply a two-way interaction between travel time reliability on a route and users route choice behaviour on 
day-to-day basis which is solved iteratively until StrUE is attained. 

10 Stochasticity in demand implies day-to-day variation in the number of users in the network. E.g. weekday versus weekend traffic. 
Similarly, stochasticity in capacity implies inter-day variation in the available road network supply. E.g. normal road conditions versus 
work zones. 
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1. There is a known probability function for network demand. 

2. Each user will select the minimum generalised cost path (over expectation and variability).  

3. Each user will follow the minimum generalised cost path under each demand realisation where that user 
is present.   

It is important to recognise that under StrUE conditions, the path (and link) proportions will not change day-to-
day. However, the actual link flow volumes will vary as a function of the realised demand (since the link flows 
would be the product of the realised demand and the link proportions), meaning equilibrium conditions are 
unlikely to be met for each independent demand realisation. This outcome is consistent with real-world road 
networks where equilibrium conditions are not observed on a day-to-day basis. One of the strengths of this 
approach is that the uncertainty in travel times and flows can be analytically tied back to demand uncertainty. 

Note, the major consequence of assumption #3 is that, for each origin-destination, path flow proportion will be 
equal under all demand scenarios.  This is because each user is represented as an infinitesimal unit of flow, 
which is common for continuous network equilibrium formulations.  Therefore, each path will be altered 
proportionally when the total origin-destination demand varies. 

To compute link flows, the strategic model equilibrates based on expected conditions as opposed to 
deterministic costs. In addition, the link travel time variability can be shown to be strictly a manifestation of 
travel demand uncertainty, which highlights a significant mathematical advantage of the StrUE model. The 
mathematical formulation for the problem is presented below. The notation used in the guidelines are provided 
in Table 3-1.  

Table 3-1: Notations used for the StrUE model 

Symbol Meaning 

A Link (index) set  

vt Value of time 

vr Value of travel-time reliability 

𝑓
𝑎
 Proportion of total demand on arc a; f=(…,𝑓

𝑎
,…) ∀ 𝑎 ∈  𝐴  

𝑡𝑎 Travel time on arc a; t= (…,𝑡𝑎,…) ∀ 𝑎 ∈  𝐴 

𝑝
𝑘
𝑟𝑠 Proportion of flow on path k, connecting OD pair r-s; 𝐩𝐫𝐬= (…,𝑝

𝑘
𝑟𝑠, …); 𝐩=(…,𝑝𝑟𝑠,…) 

𝑐𝑘
𝑟𝑠 Travel time on path k connecting OD pair r-s; 𝐜𝐫𝐬= (…,𝑐𝑘

𝑟𝑠, …); 𝐜=(…,𝑐𝑟𝑠,…) 

𝑞
𝑟𝑠

 Fraction of total trips that are between OD pair r-s; 1 = ∑ 𝑞௦∀௦  

𝑇 Random variable for total trips with probability distribution 𝑔(𝑇) 

𝑔 Probability distribution for of the total trips T  
  

𝛿𝑎,𝑘
𝑟𝑠  

Link-Path indicator variable 𝛿𝑎,𝑘
𝑟𝑠

= ൜
1                 if link 𝑎 is on path 𝑘 between OD pair 𝑟 − 𝑠
0               otherwise                                                                 

                               

(∆𝑟𝑠)𝑎,𝑘 = 𝛿
𝑎,𝑘

𝑟𝑠
; ∆= (… , ∆௦, … ) 

𝑤 
Variable that indicates the proportion of total trips considered in the integration of the objective 
function. 

As path flow proportions will be fixed, link flow proportions will be as well.  Therefore, the developed StrUE 
formulation finds the proportion of flow on each link such that all used paths between an OD pair have the 
same expected travel time:   

min 𝑧(𝑓) = 𝑣௧ න  න 𝑡(𝑤𝑇)
ೌ



𝑔(𝑇)𝑑𝑤𝑑𝑇
∞



+ 𝑣 ൭න  න 𝑡
ଶ(𝑤𝑇)

ೌ



𝑔(𝑇)𝑑𝑤𝑑𝑇
∞



−  න ቆන 𝑡(𝑤𝑇)𝑔(𝑇)𝑑𝑇
∞



ቇ

ଶ

𝑑𝑤
ೌ



൱ [3.6] 

Subject to: 
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 𝑝
௦



= 𝑞௦                                                          ∀𝑟, 𝑠                                                                         [3.7] 

𝑝
௦ ≥ 0                                                                    ∀𝑟, 𝑠                                                                         [3.8] 

𝑓 =    𝑝
௦𝛿,

௦

௦

                                       ∀𝑟, 𝑠                                                                        [3.9] 

In this formulation, the objective function is the sum of the integrals of the expected value of the link 
performance functions. Equation 3.7 represents a set of flow conservation constraints, that is the sum of the 
proportions of total demand on all paths k connecting origin r to destination s should be equal to the fraction 
of total network demand travelling between OD pair r-s. Equation 3.8 ensures the proportions 𝑝

௦ are non-
negative. The network structure enters the formulation through Equation 3.9, which defines the link proportion 
of the total demand in terms of path proportions.  

In essence, a traveller develops a route choice strategy based on their preference for travel time and reliability, 
which they follow regardless of the realised travel demand/capacity on any given day. Accordingly, StrUE 
equilibrates on the “expected conditions”, where links have a mean and SD of travel time and flow (follow a 
demand distribution, as opposed to the traditional deterministic approach). As a result, it is possible to 
analytically characterise the variance of travel time (a measure of reliability) on a route which then feeds into 
the cost function used to determine route assignment at equilibrium conditions. Therefore, travel time reliability 
is incorporated within the route choice component of the assignment and also can be measured as an output 
from the model.  

The StrUE traffic assignment approach could theoretically replace the final step of traditional 4-step strategic 
travel models such as the Sydney Travel Model (STM) and is a promising modification to capture the concept 
of travel time reliability. This project includes an application of StrUE on the Sydney road network to determine 
travel time SD on a few selected routes (refer to Section 3 of Appendix A3 for more information on the Sydney 
dataset). The application methodology used can be summarised as follows: 

 StrUE requires standard network geometry inputs of the study area as well as the proportion of OD 
demands to initiate the model. An assumption will be made on the distribution of the total network demand 
based on literature and available data sources. The total demand realisation varies according to the 
defined probability distribution where link and routes are perfectly correlated. This assumption ensures a 
closed form formulation as is a reflection that over time peoples route choice and behaviour becomes 
consistent. 

 The mean and SD of link travel times are required to calibrate and validate the model. The SD of the total 
demand for the network is the key calibration parameter. The StrUE traffic assignment is executed by 
assuming a value for the SD of travel time of total network demand and the resulting output link travel 
times and SD of travel times will be compared against the collected data. The value of the SD of travel 
time of total network demand will be adjusted until the modelled travel times equal the collected travel time 
data. 

Like other strategic models, the key traffic performance results such as link travel times and link volumes can 
be extracted in an application of the model. As stated above, the SD of link travel times across the network is 
a direct output of the model providing an indication of the spatial distribution of travel time variability as a 
measure of travel time reliability. 
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3.3.3 Proposed Network Modelling with ARSD and StrUE 

The application of transport models is dependent on the purpose of the transport model. For example, 
understanding the impact of minor modifications to land use or signal timing may only have localised network 
impacts requiring the application of a simple model to assess travel time reliability performance at an 
approximate level, such as the proposed ARSD. However, in order to study the changes in travel time reliability 
due to significant infrastructure changes (e.g. introduction of a new development or construction of a new link), 
it is essential to capture the correlations between infrastructure and behaviour throughout the network as these 
changes have non-linear impacts across the network. These situations require complex network models such 
as the proposed StrUE model. As there are fundamental differences in the modelling technique (ARSD 
captures correlations between link travel times exogenously while StrUE captures it endogenously accounting 
for reliability of each link and route in users route choice), it is critical to evaluate and present both options. 

Both models are evaluated and compared so that practitioners have multiple options when trying to appraise 
travel time reliability at a network level. Accordingly, the methodology is as follows: 

 Demonstrate the differences between the standard static network modelling approach with those of the 
ARSD and StrUE models  

 Develop ARSD and StrUE on the Sydney road network and using Google data 

 Conduct sensitivity analysis of demands to understand the costs and benefits of each approach.  
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4 Calibrated Models 

This section presents the calibration and validation results for the day-to-day link travel time variability model 
(Section 4.1), the day-to-day route travel time variability model (Section 4.2) and the day-to-day network travel 
time variability model (Section 4.3) by applying the proposed methodology (discussed earlier in Section 3) on 
the available datasets.  

4.1 Link Travel Time Variability Model 

4.1.1 Calibration of ATAP Link Model  

The ATAP link model, shown in Equation 3.1, that is 𝑪𝒐𝑽 = 𝑎 ቂ
(ூିଵ)

ூ
ቃ



∀ 𝐶𝐼 ≥ 1, was calibrated using the full 

NetPReS dataset that was available for analysis (as discussed in Appendix A3). The raw data comprised 15-
minute travel speed information, along with link lengths, for all links across a four-month period, that is August 
to November 2018. The daily data was available between 5am and 9pm which equates to 64 15-minute time 
intervals (refer to Appendix A3 for details of the NetPReS data). The dataset was divided into two groups: (i) 
arterials and (ii) freeways.  

The ATAP link model was developed for each subset using the log-transformed model shown in Equation 3.2. 
The estimated dependent variable Ln(CoV) was then converted back into CoV, which represents Equation 3.1. 
Before model calibration, the dataset was prepared by following a filtering and processing procedure. The 
filters were applied to remove any outliers which can negatively influence the model fit. The filtered data 
included points which satisfy: 

 CI ≥ 1 

 CoV > 0 

 Speed > 10km/h 

 Free-flow speed (𝑉) – 99th percentile of all speed values at a link within a month 

 Weekdays, excluding public holidays 

 No major incidents or extreme weather events. 

The data was aggregated by each month for a given time interval for a link. This allowed the determination of 
day-to-day changes in link travel time within a 15-minute time interval on a month-by-month basis, which brings 
a fair bit of variability in the results as some months correspond to a particular traffic activity (e.g. December 
versus March). Combining several months data into one for analysis would have resulted in masking this 
phenomenon.  

Similarly, the free-flow speed for a link was calculated for one month over a link. This implied that a total of 
four free-flow speeds were calculated for each link. For computation of free-flow speed, the 99th percentile of 
all speed values at a link within a month was used. This implied that only 1% of the data was above this 
threshold which mainly accounts for over-speeding vehicles and can safely be ignored. Free-flow travel time 
was then calculated as the ratio of link length and free-flow speed which corresponds to the 99th percentile 
speed.  

Finally, CoV and CI are calculated which are fed into the model calibration procedure. A hypothetical example 
has been presented below which illustrates the steps followed to calibrate the ATAP link model.  
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 Step 1 – The dataset: The dataset (for a given road type: arterial or freeway) represents travel speed 
information for each link observed across 64 15-minute time periods (5am to 9pm) for all weekdays, 
excluding public holidays, in August to November 2018. For example, the figure below shows the prevailing 
speeds between 7:00-7:15am during weekdays, excluding public holidays, in August 2018 along with other 
information for link id 12 (that is the average speed of all vehicles recorded travelling on a link in a given 
15-minute period and a day). Similarly, information for the other months for the same link can also be 
extracted.  

  

 Step 2 – Free-flow speed and free-flow travel time: The free-flow speed for each link during a month 
(weekdays, excluding public holidays) is calculated as the 99th percentile value from the prevailing speed 
data (across all time-periods). For example, the free-flow speed for link id 12 will be calculated as the 99th 
percentile of 1,472 prevailing speed observations (23 observations per time period multiplied by 64 15-
minute time-periods) for the month of August 2018 (weekdays, excluding public holidays). Let us assume 
the calculated free-flow speed is 61km/h. Thus, the free-flow travel time, 𝑇, will be (450*60)/(1000*61) 
which is 0.442 minutes. Similarly, 𝑇 for all other links and months can also be extracted. 

 Step 3 – Calculate travel time: Calculate travel times by dividing the link length by the prevailing speeds. 
The figure below shows the conversion of data into travel time (in minutes) information. Similarly, travel 
time data can be obtained across all time-periods, links and months.  
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 Step 4 Mean and SD of travel time: Calculate the mean and SD of travel time for each link, time-period 
and month (weekdays, excluding public holidays). Given that there are 64 15-minute time-periods to 
analyse (5am-9pm), there should be 64 mean and SD values per link in a month. For example, the mean 
and SD for link id 12 between 7-7:15am in August 2018 (weekdays, excluding public holidays) is 0.505 
and 0.046 respectively. The SD has been calculated using the population standard deviation formula (e.g. 
STDEV.P function in MS-Excel).  

 Step 5 Compute CoV: The CoV for each link, time period and month (weekdays, excluding public 
holidays) can be calculated as the ratio of SD of travel time and mean travel time. Thus, there will be 64 
CoV values per link in a month. For example, the CoV for link id 12 between 7-7:15am in August 2018 
(weekdays, excluding public holidays) is 0.046/0.505 which is 0.091.  

 Step 6 Compute CI: The CI for each link, time period and month (weekdays, excluding public holidays) 
can be calculated as the ratio of prevailing travel time and free-flow travel time. Thus, there will be 64 CI 
values per link in a month. For example, the CI values for link id 12 between 7-7:15am in August 2018 
(weekdays, excluding public holidays) are shown in the figure below. As mentioned in step 2, 𝑇 = 0.442 
minutes for link id 12 for August 2018.  
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 Step 7 Calculate (CI-1)/CI: Calculate the independent variable in Equation 3.2  

 Step 8 Take natural logarithm: Calculate the natural logarithm of CoV and (CI-1)/CI values computed in 
steps 5 and 7 respectively. 

 Step 9 Model fitting: Estimate a linear regression model with Ln(CoV) as the dependent variable and 
Ln[(CI-1)/CI] as the independent variable. The result of model calibration will be Ln(a) and b values from 
Equation 3.2 

Table 4-1 shows the calibration statistics for the two models, with respect to Equation 3.2, that is 

𝑳𝒏(𝑪𝒐𝑽) = 𝑳𝒏(𝒂)  + 𝒃. 𝑳𝒏(
𝑪𝑰ି𝟏

𝑪𝑰
)  ∀  𝑪𝑰 ≥ 𝟏, which was converted back into Equation 3.1, that is 𝑪𝒐𝑽 =

𝒂 ቂ
(𝑪𝑰ି𝟏)

𝑪𝑰
ቃ

𝒃

∀ 𝑪𝑰 ≥ 𝟏, the ATAP link Model.  

As shown in the table, the p-value of the estimated parameters is less than 0.05 which implies that these are 
statistically significant at 95% confidence level across both models. The parameter Ln(a) corresponds to the 
intercept term in Equation 3.2 which was converted back into the parameter a in Equation 3.1 by taking an 
antilog. For example, if Ln(a) is equal to -0.521 for arterials, then a will be 𝑒ି.ହଶଵ = 0.5939. The magnitudes 
of the calibration parameters (a and b) are lower for arterials when compared to freeways. 

Considering a CI of 2, the CoV for arterials and freeways was found to be 0.30 and 0.37, respectively. Thus, 
the freeway dataset showed a higher travel time variability than the arterial dataset for a given CI level. This 
observation can be justified as follows: as the operating speeds of freeways are significantly higher, 
phenomena such as traffic oscillations occur at relatively lower congestion levels (than arterials) which lead to 
a spike in travel time variability.  

The goodness-of-fit is measured by the Root Mean Squared Error (RMSE) value which is defined as the square 
root of the sum of squared differences between the observed and the predicted quantity, divided by the number 
of observations, that is, 𝑅𝑀𝑆𝐸 = ඥ∑ (𝑦 − 𝑦ො)

ଶ
ୀଵ 𝑛⁄ .  

For the linear-log model given in Equation 3.2, the RMSE was found to be 0.4727 and 0.652 for arterial and 
freeway models respectively. Upon plugging the parameters (a and b) in Equation 3.1, the RMSE value with 
respect to Equation 3.1 was also calculated and found to be 0.1067 and 0.1235 for arterial and freeway models 
respectively.  

The R-squared values for Equation 3.2 were found to be 0.559 and 0.668 for arterial and freeway models 
respectively. The R-squared values for Equation 3.1 were not calculated as these statistics do not truly convey 
the goodness-of-fit for non-linear models.  
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Table 4-1: ATAP link model calibration results 

Parameter/Statistic Arterial Model Freeway Model 
No. of observations in filtered 
dataset 

162,301 79,655 

Calibrated Parameters 

Ln(a) 
-0.521*** 

(0.003) [-176.388] 
-0.234*** 

(0.007) [-34.484] 
a (antilog of Ln(a)) 0.5939*** 0.7913*** 

b 
0.968*** 

(0.002) [453.793] 
1.08*** 

(0.003) [400.759] 
Goodness-of-Fit Statistics 
RMSE (Ln(CoV)) 0.4727 0.652 
RMSE (CoV) 0.1067 0.1235 
R-squared (Ln(CoV)) 0.559 0.668 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
Standard errors of parameters reported in (.). 
T-statistics of parameters reported in [.]. 

In addition to the model represented by Equation 3.1 and 3.2, an alternative model specification was also 
tested. Equation 4.1 shows the alternative model form which represents a non-linear relationship between CoV 
and CI, with a and b as calibration parameters. By definition, the formula defines CoV as zero for CI ≥ 1. The 
CoV increases sharply at lower CIs, but eventually stabilises to a constant value for higher CIs.  Equation 4.1 
was calibrated on the same dataset using non-linear regression in the SPSS software package.  

Table 4-2 shows the calibration results for Equation 4.1. Like Table 4-1, the parameters a and b are statistically 
significant at 95% confidence levels. The RMSE of the arterial and freeway models using Equation 4.2 is 
0.1038 and 0.1154 respectively which indicates acceptable model fit to the observed data. An RMSE is an 
error around an observed CoV value. For example, an RMSE of 0.1 for the ATAP link model when it estimates 
a CoV value of 0.2, 0.3 or 0.4 suggests that the observed CoV would be on average around plus or minus 0.1 
for the predicted value. This would be an acceptable level of precision for a link model. 

Comparing these RMSE values (calculated with respect to CoV) with the ones reported in Table 4-1, the 
alternative model specification (Equation 4.1) is marginally better than the ATAP link model (Equation 3.1) for 
both arterials and freeways. In other words, both models yield similar levels of goodness-of-fit.   

𝑪𝒐𝑽 = 𝒂. ൫𝟏 − 𝒃(𝑪𝑰ି𝟏)൯ ∀ 𝑪𝑰 ≥ 𝟏 [EQ 4.1] 

 
Table 4-2: Calibration results for the alternative model specification  

Parameter/Statistic Arterial Model Freeway Model 
No. of observations (CI ≥ 1; CoV 
> 0; Speed > 10km/h) 

162,301 79,655 

a 
0.35*** 

(0.001) [350.0] 
0.336*** 

(0.002) [118.0] 

b 
0.112*** 

(0.001) [112.0] 
0.036*** 

(0.001) [36.0] 
RMSE (CoV) 0.1038 0.1154 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
Standard errors of parameters reported in (.). 
T-statistics of parameters reported in [.]. 

Figure 4-1 shows the comparison of the models represented by the ATAP link model (Equation 3.1; in Red) 
and Equation 4.1 (in Yellow) on arterial and freeway datasets. Both models show a sharp rise in CoV for CI 
values up to 2. However, while Equation 4.1 stabilises and remains constant for higher CIs, the ATAP link 
model (Equation 3.1) continues to grow at a decaying rate. This means that Equation 4.1 will predict no 
improvement, that is, a constant travel time variability for any infrastructure changes or policies in areas with 
severe traffic congestion. This behaviour is considered counterintuitive as it is expected that minor 
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improvements are possible in such scenarios. On the other hand, Equation 3.1, which is consistent with the 
law of diminishing returns, can account for gradual improvements in travel time variability at higher traffic 
congestion (CI values). Thus, Equation 3.1 was chosen as the preferred link model and addressed as the 
ATAP link model. Another reason for choosing Equation 3.1 over Equation 4.1 is Equation 3.1 can be fitted 
with ordinary least-squares regression of transformed data while Equation 4.1 requires non-linear regression. 
As well as being easier to implement, ordinary least squares regression provides an unambiguous, well 
understood R-squared measure of goodness of fit.  

Figure 4-1: Link model comparison – NetPReS dataset 

 

 

Thus, the calibrated ATAP models, based on the full NetPReS data are shown in Equations 4.2 and 4.3 11.  

𝑨𝒓𝒕𝒆𝒓𝒊𝒂𝒍: 𝑪𝒐𝑽 = 𝟎. 𝟓𝟗𝟑𝟗. ൬
𝑪𝑰 − 𝟏

𝑪𝑰
൰

𝟎.𝟗𝟔𝟖

 [EQ 4.2] 

𝑭𝒓𝒆𝒆𝒘𝒂𝒚: 𝑪𝒐𝑽 = 𝟎. 𝟕𝟗𝟏𝟑. ൬
𝑪𝑰 − 𝟏

𝑪𝑰
൰

𝟏.𝟎𝟖

 [EQ 4.3] 

 

 

11 For direct application of these models in calculations, compute the value of CI using the expression 𝑪𝑰 = 𝒎𝒂𝒙(𝟏,
T

Tf
) and use this 

value in Equations 4.1 and 4.2. This will automatically prevent the ATAP model from giving invalid CoV when CI < 1. 
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Figure 4-2 shows the ATAP link model fit on the NetPReS arterial and freeway data. For each road type, two 
plots are presented: (i) model fit on the log-transformed data (corresponding to Equation 3.2), and (ii) model 
fit on the actual data (that is, CoV versus CI). Both arterial and freeway plots show that the ATAP model link 
provides an acceptable goodness-of-fit, indicating its suitability in link travel time variability estimation. 

Figure 4-2: Travel time CoV vs CI with ATAP link model trendline – NetPReS dataset 

a) Arterial 

  

b) Freeway 
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4.1.2 Validation of ATAP Link Model  

The ATAP link model was subsequently validated on Sydney Google data and Gold Coast Bluetooth data. 

Sydney validation 

Figure 4-3 shows the ATAP link model fit on the Sydney Google travel time data. The figure shows model fit 
using the log-transformed and the actual data for both arterials and freeways. The plots show that ATAP link 
model provides an acceptable goodness-of-fit, indicating its suitability in link travel time variability estimation.  

Figure 4-3: Travel time CoV vs CI with ATAP link model trendline – Sydney dataset 

a) Arterial 

 
  

b) Freeway 
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Gold Coast validation 

Figure 4-4 shows the ATAP link model fit on the Gold Coast Bluetooth travel time data. The arterial plots below 
show that the ATAP link model depicts an acceptable goodness-of-fit indicating its suitability in link travel time 
variability estimation. The freeway plots indicate a slightly over-estimated CoV for a given CI value.  

This observation can be justified due to the geographical differences between the calibration Perth NetPReS 
dataset and the Gold Coast datasets resulting in differences in driving behaviour, road design and traffic 
conditions in those road networks. Nonetheless, the ATAP link model continues to forecast CoV at a 
reasonable level of accuracy making it the recommended modelling approach for estimating travel time 
variability on a link. 

Figure 4-4: Travel time CoV vs CI with ATAP link model trendline – Gold Coast Bluetooth dataset 

a) Arterial 
 

  
 

b) Freeway 
 

 

In summary, the results resented in the figures in this section demonstrate that the ATAP link model depicts 
an acceptable goodness-of-fit for the Perth, Sydney and Gold Coast datasets, indicating its suitability to be 
used as a national model in forecasting link travel time variability. The ATAP link model equations can be 
directly applied to traffic data from other jurisdictions. It is expected that the model would perform relatively 
well, with some level of variation such as the case in Gold Coast arterial network. Those variations are to be 
expected due to regional differences in network characteristics, travel behaviour and road conditions.  
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4.2 Route Travel Time Variability Model 

According to Nicholson (2015) (as shown in Equation 2.3, that is 𝝈𝒓
𝟐 = ∑ 𝝈𝒊

𝟐𝒏
𝒊ୀ𝟏 + 𝟐 ∑ ∑ 𝝆𝒊,𝒋𝝈𝒊𝝈𝒋

𝒏
𝒋ୀ𝒊ା𝟏

𝒏ି𝟏
𝒊ୀ𝟏 , 𝑖 < 𝑗), 

the variance of a route travel time is composed of two components:  

1. The sum of the variances of all links travel time (the ‘variance term’) and 

2. The sum of products of the travel time correlation and the SDs (the ‘covariance term’). 

The route travel time variance was calculated by applying the ATAP link model to each individual link to obtain 
the CoV value and convert into travel time SD by using Equation 4.4: 

𝜎 = 𝐶𝑜𝑉𝑖 . T𝑖 [EQ 4.4] 

Where: 

σ୧ = SD of travel time on link i 

𝐶𝑜𝑉  = travel time CoV on link i 

𝑇 = mean travel time on link i (in minutes) 

Therefore, the route travel time variability model calibration was focussed on the calibration of the CCM to 
account for the travel time correlation between any two links, including non-adjacent links.  

4.2.1 Calibration of CCM 

The linear-log CCM, shown in Equation 3.4 (𝝆𝒊,𝒋 = 𝑴𝒂𝒙[𝟎, 𝒂 . 𝐋𝐧(𝐋) + 𝐛]), was calibrated using the entire 
NetPReS dataset. The entire dataset was divided into segments based on the following classifiers: (i) road 
type (arterial and freeway), (ii) directionality (inbound and outbound), (iii) time of the day (AM, inter, PM and 
off-peak). This classification resulted in 16 data segments and the CCM was calibrated on each of them. The 
data used for analysis comprised travel time correlation between two links as the dependent variable and the 
mid-point distance (in kilometres) between the two links as an independent variable.   

Apart from the CCM shown in Equation 3.4, two other model specifications, that is an exponential (Equation 
3.3) and a shifted exponential (given by the equation 𝝆𝒊,𝒋 = 𝒂 𝒆𝒃 𝑳 + 𝒄) were also tested, and the results 
compared in order to identify the best fitting model. The results showed that the linear-log CCM (Equation 3.3: 
𝝆𝒊,𝒋 = 𝒂 𝑳𝒏(𝑳) + 𝒃) had the best R-squared value and statistically significant parameters across all 16 data 
segments. While the linear-log model was calibrated using linear regression, the other two functional forms 
were calibrated using non-linear regression (conducted in SPSS).  

Table 4-3 shows the calibration statistics for the CCM: 
 (Equation 3.4, that is 𝝆𝒊,𝒋 =  𝑴𝒂𝒙[𝟎, 𝒂 . 𝐋𝐧(𝐋) + 𝐛]).  

As shown in the table, the p-value of the estimated parameters was less than 0.05 which implies that these 
are statistically significant at 95% confidence level across both models. The goodness-of-fit for freeway data 
was found to be higher when compared to that of arterials. Similarly, the parameters 𝑎 and 𝑏 were also found 
to be of greater magnitude for freeways when compared to arterials which indicate that freeways experience 
stronger travel time dependencies among links. This observation is sensible as freeway links are more directed 
and involve fewer physical impedances to movement that restrict links acting randomly from one another.  

Once the correlation coefficient 𝝆𝒊,𝒋 between two links (within a route) are determined by the CCM (Equation 
3.4), together with the ATAP link model (Equation 3.1) to estimate the travel time SD each link, the route travel 
time variance can be estimated by applying the CRM (Equation 2.3). 
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Table 4-3: Calibrated parameters for the proposed CCM 

Road type Direction Time-period 𝒂 𝐛 R2 RMSE 

Arterial 

Inbound 

AM peak -0.0482*** 0.1658*** 0.2148 0.1012 

Inter peak -0.0236*** 0.0638*** 0.1248 0.0665 

PM peak -0.0308*** 0.0848*** 0.1415 0.0961 

Off peak -0.0445*** 0.1590*** 0.2239 0.1091 

Outbound 

AM peak -0.0302*** 0.1076*** 0.1176 0.0912 

Inter peak -0.0234*** 0.0631*** 0.1460 0.0623 

PM peak -0.0393*** 0.1121*** 0.2265 0.0838 

Off peak -0.0391*** 0.1362*** 0.2083 0.0871 

Freeway 

Inbound 

AM peak -0.1098*** 0.3477*** 0.3476 0.1483 

Inter peak -0.0870*** 0.2653*** 0.3129 0.1287 

PM peak -0.0991*** 0.3045*** 0.3084 0.1473 

Off peak -0.0992*** 0.3128*** 0.3285 0.1362 

Outbound 

AM peak -0.0620*** 0.2078*** 0.2286 0.1161 

Inter peak -0.0745*** 0.2293*** 0.2871 0.1184 

PM peak -0.1207*** 0.4181*** 0.3475 0.1710 

Off peak -0.0979*** 0.3539*** 0.3248 0.1464 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 

4.2.2 Validation of CRM – NetPReS 

In order to validate the proposed method for estimating route reliability, measured route travel time standard 
deviations from the NetPReS data were compared with predictions from the correlation route model (CRM), 
that is 𝝈𝒓

𝟐 = ∑ 𝝈𝒊
𝟐𝒏

𝒊ୀ𝟏 + 𝟐 ∑ ∑ 𝝆𝒊,𝒋𝝈𝒊𝝈𝒋
𝒏
𝒋ୀ𝒊ା𝟏

𝒏ି𝟏
𝒊ୀ𝟏 , 𝑖 < 𝑗. Figure 4-5 below illustrates the validation processes.  

The sum of instantaneous link travel times constituting the route for a given day and 15-minute time period 
determined the route travel time. Similar route travel times were then calculated across weekdays, excluding 
public holidays, for the same time-period and the SD was then taken which represented the measured route 
travel time SD for that month. This is not the same as a single vehicle traversing the route because the time 
the vehicle entered each link during a trip would vary. 

 For example, the duration between 7am to 9am is comprised of eight 15-minute time periods. For each 
15-minute time slice, the average link travel times were added together for each of the four months to obtain 
the route travel time. Eight route travel time observations were recorded for each month, and the process was 
repeated for the remaining time periods for each month by excluding weekends and public holidays within that 
month to create the entire route travel time dataset. The SD of route travel times could then be measured from 
the route travel time dataset for the given 15-minute time-period and the month.  

The CRM, (Equation 2.3), can be described as the sum of a ‘variance term’, ∑ 𝝈𝒊
𝟐𝒏

𝒊ୀ𝟏 , and a ‘covariance term’, 
𝟐 ∑ ∑ 𝝆𝒊,𝒋𝝈𝒊𝝈𝒋

𝒏
𝒋ୀ𝒊ା𝟏

𝒏ି𝟏
𝒊ୀ𝟏 , 𝑖 < 𝑗.  

The ATAP link model was used to obtain the link variances (𝝈𝒊
𝟐) that are summed in the variance term, as well 

as the SD (𝝈𝒊, 𝝈𝒋) in the covariance term. The correlation parameter (𝝆𝒊,𝒋) is determined using the CCM which 
provides a pair-wise correlation between two links within a route. The CCM (Equation 3.4) was fitted with 
simple linear regression. 
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Figure 4-5: Correlation route model validation flow chart 

 

A total of 27 bi-directional routes available in the NetPReS dataset were utilised for validation of the CRM. The 
route set comprises 20 arterial routes and 7 freeway routes.  

Figure 4-6 compares the measured and predicted route reliabilities for the arterial (left) and freeway (right) 
routes. The horizontal axis shows the measured route travel time SD and the vertical axis shows the route 
travel time SD predicted by the CRM. The four different coloured dot points indicate the four months that were 
used for analysis. Each dot point corresponds to a measured versus predicted comparison for a 15-minute 
time interval and a route.  

While Figure 4-6 presents a comparison across all 64 15-minute time periods across four months, Figure 4-7 
to Figure 4-10 presents the comparison (arterials on the left and freeways on the right) for the AM-peak (7am 
to 9am), Inter-peak (9am to 3pm), PM-peak (3pm to 6pm) and Off-peak (5am to 7am and 6pm to 9pm) periods 
respectively.  
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Figure 4-6: Route travel time SD validation across all time periods for arterials and freeways 

   

Figure 4-7: Route travel time SD validation across AM peak for arterials and freeways  
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Figure 4-8: Route travel time SD validation across inter peak for arterials and freeways  

 

Figure 4-9: Route travel time SD validation across PM peak for arterials and freeways  
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Figure 4-10: Route travel time SD validation across off peak for arterials and freeways  

 

The 45-degree black dashed line shows a 1:1 relationship between the predicted and measured route travel 
time reliability values. A perfect model would have all dot points lying on the 1:1 dashed line. The greater the 
distance away from the dashed line, the greater the error in the travel time reliability prediction. 

As Figure 4-7 to 4-10 show, the CRM gives a reasonable model fit to the measured route travel time SDs, with 
a majority of points clustered around the 1:1 (45-degree) trend line. The clustering around the dashed line is 
denser in the case of arterials when compared to freeways. Deviations from the 45-degree line can be 
explained by factors not taken into consideration by the CRM such as number of roundabouts and bottlenecks, 
geometric conditions, and negatively correlated links etc. which information was not available in the NetPReS 
dataset used for model development. Other factors such as incidents, weather, or events could also impact on 
the accuracy of the estimation. Given that the CRM comprises two sub models (ATAP Link Model and log-
linear Correlation Model - Figure 4.5), it seems reasonable to suspect that most of the error in the CRM is due 
to inherent errors in these sub-models, and when models are applied together the error can compound. 

Figure 4-11 and Figure 4-12 present a heatmap of the RMSE values for arterials and freeways respectively. 
The rows in the heatmaps represent each route and direction with the number corresponding to the route id 
(corresponding route names provided in Appendix A3) and the suffix I and O representing whether the route 
is in the inbound and outbound direction respectively. The columns in the heatmaps correspond to 15-minute 
time periods within a day with the time-period id#21 corresponding to the time period 5:00 - 5:15am and id#84 
corresponding to 8:45 - 9:00pm. The RMSE was calculated for each route and direction using the four 
measured and estimated route travel time SD across each of the 64 15-minute time periods.  

The colour coding of the heatmaps is anchored around the following: the highest RMSE value (5.16) is denoted 
in Red, the lowest (0.01) in Green and an RMSE of 0.5 is coded in Yellow. In practice, an RMSE value of up 
to 0.5 signifies a decent model accuracy.  

Based on this colour scheme, the CRM performs well (that is, not many Red cells which signify poor fit) for a 
majority of the routes (both arterial and freeway) across different time periods in a day. The blank rows in the 
heatmaps correspond to the routes which had missing data and were thus not populated in the heatmaps.  

Figure 4-13 presents the frequency distribution of the RMSE values for arterials and freeways. The figure 
indicates median RMSE values of 0.40 minutes for arterials and 0.50 minutes for freeways, and average RMSE 
values of 0.52 minutes for arterials and 0.77 minutes for freeways. It implies that on average, the CRM 
produces an average dispersion of 0.52 or 0.77 minutes around the estimated route travel time variability. For 
example, an RMSE of 0.5 for a travel time variability value of 2 minutes, estimated by CRM, would suggest 
that the observed route variability value on average would be either 1.5 or 2.5 minutes which indicates good 
model precision.  
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Figure 4-11: RMSE heatmap for arterials – NetPReS dataset 

 

Legend: Green: Lowest RMSE; Red: Highest RMSE; Yellow: RMSE = 0.5.  

‘I’ refers to Inbound and ‘O’ refers to Outbound. 
 

 



 

Road Reliability Measurement –Research Report         41 

Figure 4-12: RMSE heatmap for freeways – NetPReS dataset 

 

Legend: Green: Lowest RMSE; Red: Highest RMSE; Yellow: RMSE = 0.5.  

‘I’ refers to Inbound and ‘O’ refers to Outbound. 
 
Figure 4-13: RMSE frequency distribution 
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Figure 4-11 shows that most of the cells were Green and Yellow which indicates a lower RMSE for a majority 
of the routes across time periods, thus reporting that the CRM has a good model accuracy. This is consistent 
with the RMSE distribution in the arterial routes examined and shown in arterial distribution plot in Figure 4-13 
where more than 50% of observations have RMSE values below 0.5 minutes.  

The RMSE distribution in the freeway routes shown in heatmap of Figure 4-12 has a slightly higher proportion 
of Red cells which indicates a relatively lower model accuracy on freeway data. Similarly, Figure 4-13 shows 
that the median freeway RMSE value is slightly above 0.5 minutes. This could be due to limited freeway data 
availability which could influence the training (calibration) of the CRM. 

The CRM has only been validated against the NetPReS data. Based on the link model validation presented in 
Section 4.1, it is expected that the current calibration parameters will have a reasonable goodness-of-fit on the 
Perth datasets. It is recommended that the parameters be recalibrated to fit other jurisdictional datasets. 

In summary, the CRM is considered an appropriate methodology for forecasting route travel time variability as 
it not only considers independent link travel time variability (calculated using the ATAP link model in Equation 
3.1), but also the variability which arises due to correlations among links forming a route (using the CCM in 
Equation 3.3).  

The model was calibrated using the Perth NetPReS link dataset. The Perth route dataset, which was derived 
from the link dataset, was used to validate the CRM and showed a reasonable goodness-of-fit. Thus, this 
project recommends the use of the calibrated CRM (which includes the calibrated ATAP models (Equations 
4.1 and 4.2) and CCM (Table 4.2)) to evaluate route travel time variability at a national scale. However, the 
CRM has been validated for NetPReS data only due to computational challenges associated in validation using 
other jurisdictional data. To use the CRM to measure travel time reliability changes in before-and-after cases 
for a specific route, practitioners and modellers should be confident that the CRM will capture the changes in 
travel time reliability with acceptable accuracy. 

4.2.3 Application of CRM – Perth Arterial Case Study 

The Perth case study focused on an evaluation of the Wanneroo Road Duplication project’s impact on the 
travel time reliability during weekdays, excluding public holidays, by application of CRM. The Wanneroo Road 
Duplication project was a $31m project to widen Wanneroo Road, located at the northern side of Perth CBD 
running parallel to the Mitchell Freeway, from Joondalup Dr and Flynn Dr. This section was formerly a single 
carriageway carrying 26,000 vehicle per day. The project converted the single carriageway into dual 
carriageway in both directions between the section north of Joondalup Dr and the section south of Flynn Dr. 
The project commenced in November 2017 and was completed and open to traffic in April 2019.   

Travel time reliability comparison was conducted based on the following criteria: 

 Before period: August to October 2017 (Intelematics data) 

 Alternative before period: August to October 2018 (NetPReS hybrid data) 

 After period: August to October 2019 (NetPReS hybrid data) 

 Time period: AM peak, 7am to 9am 

 Temporal granularity: 15-minute 

 Route: Wanneroo Road from Hester Ave to Ocean Reef Rd, a total length of 14,690 m 

 Number of links: 8 

 Direction: Inbound 

 Exclusion: weekends, public holidays, major incident dates, and extreme weather dates. 

Testing of the CRM on a project followed the steps outlined in Figure 4.5. It involves the steps of measuring 
and estimating day-to-day changes in the route travel time on weekdays, excluding public holidays, for before-
and-after periods, and comparison of predicted route travel times against the measured route travel time. The 
box below outlines the steps undertaken in the testing of the CRM using data from this project.  
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Step 1: Select one calendar month one 15-minute time-period data, 7.00 - 7.15am August 2018 for 
instance, apply CRM to estimate the route travel time SD for the selected time period.  

Step 1.1:  Apply ATAP link model to estimate the travel time SD for each link. Application of ATAP link 
model requires the following inputs: free-flow travel time and mean travel time of the month for 
each link. Noted that free-flow travel time for a link will be constant for the selected month, 
however it may vary between different months.  

Step 1.2:  Apply Linear-log correlation model to estimate the correlation coefficient between two links, 
includes non-adjacent links. Application of Linear-log correlation model requires the following 
inputs: mid-point to mid-point distance between two links, and selection of parameters for the 
time period of the day (e.g., AM peak) (from Table 4-3). 

Step 1.3:  Apply CRM to estimate the route travel time SD. Application of CRM requires the following 
inputs: travel time SD for each links and correlation coefficient between two links, which are 
the outputs from Step 1.1 and Step 1.2 above. 

Step 2:  Measure the 7am-7.15am route travel time SD from the field data. 

Step 2.1:  For the given 7am-7.15am time period on each weekday (excluding public holidays) in August 
2018, sum all links mean travel time to obtain the observed route travel time for the selected 
time period on that day.  

Step 2.2:  There will be one route travel time value for each weekday (excluding public holidays) within 
the calendar month for the selected 15-minute time period. Take the SD value from those 
observed route travel time values, this would be the measure route travel time SD. 

Step 3:  Repeat Step 1 and Step 2 above for each other 15-minute time periods, and for each calendar 
month within the before-and-after periods. This will give both measured SD and predicted SD 
for each 15-minute time period for each month, as shown in Table 4-4.  

Step 4:  Calculate the changes in the measured route SD and predicted route SD for each 15-minute 
time period for each month, this will be the impact of the infrastructure project on the travel 
time SD. The comparison of values between measured SD and predicted SD give an indication 
of accuracy for CRM.  

Step 5:    The average SD value or average change in SD in Table 4-4 is calculated by taking the 
mathematical average of relevant values above, e.g.  𝜎ത = ∑ 𝝈𝒊

𝟐𝟒
𝟏 ÷ 24. 

                  The difference between the average predicted route SD values for the before-and-after periods 
is the predicted travel time reliability impact of the project on the defined route inbound direction 
during AM peak period.  

                  The difference between the average measured route SD values for the before-and-after 
periods is the actual travel time reliability impact of the project on the defined route inbound 
direction during AM peak period. 

                  The comparison between the average measured change in route SD and the average 
predicted change in route SD gives the insight into the accuracy of application of CRM on 
assessing infrastructure project impacts on travel time reliability. 

It was anticipated that the CRM would predict the route travel time SD with reasonable confidence in accuracy. 
The initial attempt to assess the accuracy of CRM by comparing the predicted route SD with the measured 
route SD showed that while the CRM predicted the after-period route SD with reasonable accuracy (Figure 
4-14 (2), it underestimated the before period route SD significantly, as shown in Figure 4-14 (1) on the left 
hand side.  

Investigation into the causes of underestimation in the before period travel times found that it was due to the 
before period data (Aug-Oct 2017) being a different data source (Intelematics) to the after period data 
(NetPReS hybrid data, which was sourced from multiple data providers such as TomTom, AddInsight, NPI, 
IRIS, and Intelematics). It was also noted that the CRM that was calibrated using NetPReS hybrid data and 
that should a different data source is used, then a recalibration of the model is required. 
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To address this inconsistency in the data sources for the before and after periods, the study examined an 
alternative before period (August to October 2018) when the NetPReS hybrid data was available and assessed 
the project’s travel conditions at that time. Investigation of a series of high resolution historical aerial images 
of the construction sections of the study route from NearMap revealed that the travel condition was still single 
carriageway during the alternative before period. Therefore, it was possible for both the alternative before 
period and the after period to be assessed using the single NetPReS dataset. Five mean speed observations 
below 20km/h, which were considered as construction impact, were removed from raw datasets.  

Figure 4-14 shows the visual comparison of the measured and predicted route SDs for both before-and-after 
periods (using Intelematics for before period and NetPReS for the after period) and alternative-before-and-
after periods (using only the single NetPReS dataset). While the CRM underestimated the before period route 
SD due to the speed data came from the different source, it produced a reasonable amount of accuracy in the 
predicted route SD values for both the before period and after period when only the NetPReS data was used.  

Table 4-4 shows the measured versus predicted route SDs for the alternative before period and after period 
and its changes. Two methods of calculating route SD are presented: the predicted route SD using CRM and 
the measured route SD from field data. The comparison of the predicted changes in route SD with the 
measured changes in route SD in the before-and-after periods analysis give an indication of route SD 
prediction accuracy from CRM. Therefore, the average measured and predicted route SD values for before-
and-after periods are compared.  

In summary, CRM predicts that the Wanneroo Road Duplication project would increase the route travel time 
SD by 0.3 minutes on average for AM peak inbound direction of the route. This compares to the measured 
average change of 0.0 minutes in route travel time SD from the field data. CRM overestimates the change in 
travel time reliability by 0.3 minutes per vehicle.  

For the alternative before period, the average route SD value CRM predicted matches the average route SD 
value measured from field data. For the after period, the CRM on average overestimates the route SD by 0.2 
minutes or 12.5%.  
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Figure 4-14: Measured versus predicted route SD – Perth arterial case study 

  
  (1) Before period – Intelematics data    (2) Alternative before period – MRWA hybrid data 

Table 4-4: Measured versus predicted route SD – Perth arterial case study 

Time  
Route SD alternative before period, min Route SD after period, min Changes in route SD, min 
Aug Sep Oct Aug Sep Oct Aug Sep Oct 

SDm1 SDp2 SDm SDp SDm SDp SDm SDp SDm SDp SDm SDp ∆SDm ∆SDp ∆SDm ∆SDp ∆SDm ∆SDp 
07:00 - 07:15 2.0 1.4 1.1 1.1 1.3 1.1 1.2 1.1 1.2 1.4 0.9 1.2 -0.8 -0.3 0.1 0.3 -0.4 0.2 
07:15 - 07:30 2.8 1.9 1.2 1.1 0.7 1.2 1.4 1.4 1.7 1.7 1.3 1.4 -1.4 -0.4 0.4 0.5 0.5 0.2 
07:30 - 07:45 1.4 1.7 1.3 1.2 1.3 1.5 1.9 2.0 1.4 2.0 1.9 1.8 0.6 0.3 0.1 0.8 0.6 0.3 
07:45 - 08:00 1.8 2.1 1.2 1.4 2.2 1.4 1.7 2.3 1.4 2.6 2.6 2.1 -0.1 0.3 0.3 1.2 0.4 0.7 
08:00 - 08:15 1.6 2.0 1.7 1.4 1.4 1.4 2.2 2.7 1.8 2.5 2.9 2.1 0.6 0.8 0.1 1.1 1.4 0.7 
08:15 - 08:30 1.4 1.8 1.7 1.5 2.0 1.7 2.3 2.5 2.0 2.1 2.0 1.6 0.9 0.7 0.3 0.6 -0.1 0.0 
08:30 - 08:45 1.4 1.9 1.6 1.8 1.3 1.8 1.6 1.8 0.8 1.4 1.4 1.4 0.2 0.0 -0.8 -0.3 0.2 -0.4 
08:45 - 09:00 2.3 2.1 1.3 1.6 1.8 1.6 1.0 1.5 0.5 1.3 1.1 1.3 -1.3 -0.6 -0.8 -0.3 -0.7 -0.3 
Average 
measured 

1.6 1.6 0.0 

Average 
predicted 

1.6 1.8 0.3 

1  SDm refers to the measured route SD in minute. 
2  SDp refers to the predicted route  SD in minute.
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4.2.4 Application of CRM – Brisbane Freeway Case Study 

The Brisbane case study focuses on evaluation a series of infrastructures projects on Bruce Hwy between 
2015 to 2019 and their impacts on Bruce Hwy inbound travel time reliability by application of CRM. Those 
projects include: 

 Managed motorway treatments, it includes ramp signalling at five locations in the study route, variable 
speed limit (VSL) signs and queue detection/queue protection systems. Those systems were activated at 
different time from September 2015 onwards and fully activated by the end of 2016. 

 Boundary Rd interchange, it involved the upgrade of the Boundary Road interchange approximately 30 
km north of the Brisbane CBD and included a new six lane, four span concrete bridge over the Bruce 
Highway. Construction began in May 2016 and opened to service on 8 September 2017. 

 Gateway Upgrade North, it involved the upgrade of the Gateway Motorway between Nudgee and Deagon, 
with additional pavement and safety works through to Bracken Ridge. Major construction started in 
February 2016 and completed in March 2019. The project is expected to ease the congestion experienced 
at downstream of Bruce Hwy inbound before the Gateway Motorway. 

It is worth noting that the actual morning peak on Bruce Hwy spans between 5 am and 10 am, however for the 
purpose of CRM testing, the analysis period was kept at typical AM peak between 7 am and 9 am during 
weekdays, excluding public holidays. Travel time reliability comparison was conducted based on the following 
criteria: 

 Before period: June to August 2015 

 After period: June to August 2019 

 Time period: AM peak, 7 am to 9 am 

 Temporal granularity: 15 min 

 Route: Bruce Hwy between Bribie Island Rd and Bracken Ridge, a total length of 28,346 m 

 Number of links: 17 

 Direction: Inbound 

 Exclusion: weekends, public holidays, major incident dates, and extreme weather dates. 

By following the same steps in Section 4.2.3, Figure 4-15 shows the visual comparison of the measured and 
estimated route SDs. Unlike the Perth case study which showed reasonably accurate estimates compared to 
measured values, the Brisbane route SD estimate are significantly lower than the measured values. Table 4-5 
shows the measured versus predicted route SDs and the changes in route SDs in before-and-after periods. 
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Figure 4-15: Measured versus predicted route SD – Brisbane freeway case study 

   

Table 4-5: Measured versus predicted route SD – Brisbane freeway case study 

Time  
Route SD alternative before period, min Route SD after period, min Changes in route SD, min 
Aug Sep Oct Aug Sep Oct Aug Sep Oct 

SDm SDp SDm SDp SDm SDp SDm SDp SDm SDp SDm SDp ∆SDm ∆SDp ∆SDm ∆SDp ∆SDm ∆SDp 
07:00 - 07:15 6.1 2.3 3.5 1.1 9.0 2.6 3.1 0.8 0.6 0.3 3.1 1.0 -3.0 -1.5 -2.9 -0.8 -5.9 -1.6 
07:15 - 07:30 6.3 2.8 3.4 1.3 5.1 2.6 3.2 0.8 2.2 0.5 3.6 1.3 -3.1 -2.0 -1.2 -0.7 -1.5 -1.3 
07:30 - 07:45 7.8 3.0 3.2 1.3 3.3 2.5 3.7 1.0 4.5 0.8 4.2 1.6 -4.1 -2.1 1.4 -0.5 0.9 -0.9 
07:45 - 08:00 8.0 2.9 3.4 1.3 2.8 2.2 5.3 1.2 2.5 0.7 4.2 1.6 -2.7 -1.7 -0.9 -0.6 1.4 -0.6 
08:00 - 08:15 7.1 2.4 2.9 1.0 2.6 1.9 5.6 1.1 1.3 0.6 3.9 1.4 -1.5 -1.3 -1.6 -0.4 1.3 -0.5 
08:15 - 08:30 7.5 2.0 2.5 0.8 2.9 1.8 5.0 0.9 1.1 0.5 3.0 1.1 -2.5 -1.1 -1.5 -0.2 0.1 -0.7 
08:30 - 08:45 9.2 1.8 2.0 0.5 3.3 1.4 2.6 0.6 0.8 0.4 2.3 0.9 -6.6 -1.2 -1.1 -0.1 -1.0 -0.6 
08:45 - 09:00 10.4 1.6 1.1 0.3 3.1 0.9 1.6 0.4 0.4 0.3 2.2 0.7 -8.8 -1.2 -0.7 0.0 -0.9 -0.2 
Average 
measured 

4.8 2.9 -1.9 

Average 
predicted 

1.8 0.8 -0.9 

1  SDm refers to the measured route SD in minute. 
2 SDp refers to the predicted route SD in minute.
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In summary, CRM predicts that those past infrastructure projects on Bruce Hwy Queensland between 2015 
and 2019 would reduce the route travel time SD by 0.9 min in average for AM peak inbound direction of the 
study route. This compares to the measured reduction of 1.9 min in route travel time SD from the field data, 
CRM underestimates the actual benefit in reliability cost saving by 1 min per vehicle, or 52.6%. On average, 
the CRM underestimates the before period and after period route SDs by 62.5% and 72.4% respectively.  

There were three main reasons that caused this underestimation: 

1. The ATAP link model and CCM parameters were calibrated based on Perth NetPReS hybrid data, while 
the Brisbane case study was based on a single source of data. Different data collection method behaves 
different with their own way of generating errors. Therefore, local calibration is recommended, and 
practitioners may also consider what is the predominant methods of data being collected. 

2. The underestimation may be caused by the geographical differences between the calibrated Perth 
NetPReS dataset and the Brisbane datasets. This geographical difference may result in differences in 
driving behaviour, road design and traffic conditions on those road networks. Recalibration of the ATAP 
link model using Queensland data may solved this underestimation. 

3. It can also be the nature of the predicted model that there will always be some level of overestimation or 
underestimation which is consider as error in the model. Using Perth network as an example in Figure 4-6, 
by applying the CRM, some routes may show very accurate estimates while others may show significant 
over-or-underestimations like the Bruce Hwy estimates. Therefore, unless the model is calibrated on route-
by-route basis, this type of error cannot be eliminated. The model can however be improved to reduce this 
error by further study into other variables which also have impacts on travel time reliability and were not 
considered in this model. 

4.3 Network Travel Time Variability Models 

4.3.1 Calibration of ARSD 

The calibration of ARSD model involves determining the value of 𝜸 in Equation 3.5 (that is  

𝝈𝒓 ≈ 𝜸 ∑ 𝝈𝒍) based on the real-world information.  

Investigation into the relationship between route travel time SD and 𝜸 has concluded that the level of travel 
time correlation between links determines the value of 𝜸, and it varies with the time-period, direction of travel, 
length and road type. Due to the complexity of its relationship between the 𝜸 value and its dependent variables, 
and its proposed use as an approximation only, the calibration of ARSD model was not considered within the 
scope of purposes and it is not conducted in this project. 

The entire NetPReS dataset was used to calculate the likely 𝜸 value range. The NetPReS dataset was 
segregated into two segments: arterials and freeways. The value 𝜸 for each route was calculated as the ratio 
of the route travel time SD (obtained from the CRM in Equation 2.3) and link travel time SD (obtained from the 
ATAP link model in Equation 3.1). The travel time SDs were determined for the AM peak period only. Table 
4-6 shows the route-specific 𝜸 values along with other characteristics. The fifth column in the table gives the 
resulting 𝜸 value for each considered route. The last column shows the covariance term of the CRM as a 
percentage of route variance. It gives the proportion of route travel time variance accounted for by correlation 
between links, ranging from 6% to 71%. This shows the importance of travel time correlation between links 
and that it certainly cannot be ignored.  

Table 4-6: Estimated γ value from available routes in Perth network and its level of correlation between Links 

Route Direction Length, km Road type Gamma AM AM covariance 
as % of route 

variance 
Albany Hwy Inbound 51.2 Arterial 0.34 63% 

Albany Hwy Outbound 51.2 Arterial 0.30 53% 
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Route Direction Length, km Road type Gamma AM AM covariance 
as % of route 

variance 
Armadale Rd Inbound 15.88 Arterial 0.43 43% 

Armadale Rd Outbound 15.88 Arterial 0.40 33% 

Canning Hwy Inbound 16.26 Arterial 0.39 58% 

Canning Hwy Outbound 16.26 Arterial 0.34 49% 

Graham Farmer Fwy Inbound 6.81 Freeway 0.67 44% 

Graham Farmer Fwy Outbound 6.81 Freeway 0.53 48% 

Great Eastern Hwy Inner Inbound 13.94 Arterial 0.40 61% 

Great Eastern Hwy Inner Outbound 13.94 Arterial 0.35 53% 

Great Eastern Hwy Outer Inbound 47.53 Arterial 0.47 48% 

Great Eastern Hwy Outer Outbound 47.53 Arterial 0.42 40% 

Guildford Rd Inbound 11.01 Arterial 0.43 53% 

Guildford Rd Outbound 11.01 Arterial 0.39 42% 

Karrinyup-Morley Hwy Inbound 15.12 Arterial 0.40 59% 

Karrinyup-Morley Hwy Outbound 15.12 Arterial 0.36 50% 

Kwinana Fwy Inbound 57.03 Freeway 0.48 66% 

Kwinana Fwy Outbound 57.03 Freeway 0.30 52% 

Leach Hwy Inbound 23.6 Arterial 0.36 57% 

Leach Hwy Outbound 23.6 Arterial 0.34 46% 

Marmion Av Inbound 12.2 Arterial 0.51 30% 

Marmion Av Outbound 12.2 Arterial 0.47 24% 

Melville Mandurah Hwy Inbound 48.23 Arterial 0.30 51% 

Melville Mandurah Hwy Outbound 48.23 Arterial 0.27 45% 

Mitchell Fwy Inbound 35.04 Freeway 0.43 71% 

Mitchell Fwy Outbound 35.04 Freeway 0.33 64% 

Orrong Rd Inbound 10.16 Arterial 0.45 52% 

Orrong Rd Outbound 10.16 Arterial 0.42 36% 

Reid Hwy Inbound 21.39 CAH 0.48 60% 

Reid Hwy Outbound 21.39 CAH 0.42 50% 

Roe Hwy Inbound 34.09 CAH 0.41 59% 

Roe Hwy Outbound 34.09 CAH 0.38 48% 

South St Inbound 12.48 Arterial 0.43 53% 

South St Outbound 12.48 Arterial 0.40 39% 

Stirling Hwy Inbound 13.85 Arterial 0.45 51% 

Stirling Hwy Outbound 13.85 Arterial 0.37 47% 

Thomas Rd Inbound 18.5 Arterial 0.70 7% 

Thomas Rd Outbound 18.5 Arterial 0.68 6% 

Tonkin Hwy North Inbound 7.68 CAH 0.79 13% 

Tonkin Hwy North Outbound 7.68 CAH 0.75 15% 

Wanneroo Rd / Indian 
Ocean Dr 

Inbound 59.17 Arterial 0.34 58% 

Wanneroo Rd / Indian 
Ocean Dr 

Outbound 59.17 Arterial 0.30 50% 

West Coast Hwy Inbound 14.09 Arterial 0.55 24% 

West Coast Hwy Outbound 14.09 Arterial 0.41 33% 

Arterial median 0.41 49% 

Freeway median 0.45 51% 
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Since the ARSD model is an approximation intended for use in network assignment (route choice) when 
accuracy is not critical, the 𝜸 values in Table 4-6 give modellers an indication of the gamma value range 
observed for the Perth network. The table indicates a median 𝜸 value for arterials and freeways as 0.41 and 
0.45 respectively. These values can be applied to other networks for network assignment, but only in cases 
when an approximation is fit for purpose. The numerical analysis in Appendix A2.3 concluded the potential 
impact of a constant 𝜸 value across network: “The correction factor (γ) is somewhat sensitive to the correlation 
between the links… If the correlation between the links is more or less consistent across the network, then the 
impact of the level of correlation on accuracy would be marginal.”. 

In the case where a constant 𝜸 value is not suitable for its use, one of the following alternative approaches 
could be adopted: 

 Observed the 𝜸 value from field data on a route-by-route basis. 

 Use the CRM to estimate the gamma value on a route-by-route basis. 

 Use StrUE as an alternative network travel time variability model. 

4.3.2 Application of ARSD – Sydney Case Study 

The ARSD model was applied to the link specific traffic information for the AM peak period in the Sydney 
dataset, which comprises 74 (37 routes times bidirectional flow) arterial and freeway routes (refer to Appendix 
A3 for details of the Sydney data). The link level travel time SD is initially computed using the ATAP link model 
for arterial (Equation 4.1) and freeway (Equation 4.2). It is then multiplied by the median 𝜸 values of 0.41 and 
0.45 to obtain the route travel time SD. 

Figure 4-16 and Figure 4-17  show the inbound and outbound travel time SD for the arterial and freeway routes 
respectively. The figures show the travel time variability for the arterials and freeway routes considered in this 
case study. The plots show that the routes with the highest travel time SD in both the directions are route 8 
(A34) for arterials and route 3 (M5) for freeways (see Table A-4 below for route identities). The travel time SD 
is generally higher for the inbound direction than the outbound direction (except for route 9, the Princess 
Highway between Haymarket and Arncliff, which is probably due to higher users travelling towards Sydney 
airport (via the CBD) and its neighbouring employment hubs). This observation makes sense as a majority of 
traffic moves towards the Sydney CBD during AM peak. This heavy movement of traffic often leads to 
congestion and occurrence of incidents which increases travel time. Appendix A5 presents a step-by-step 
procedure for applying the ARSD model on the Sydney case study. 

Figure 4-16: Bidirectional travel time SD for arterial routes in Sydney 

  

 

  

0

1

2

3

4

5

6

7

8

9

1 2 5 6 7 8 10 11 12 13 14 19 20 21 22 23R
o

ut
e

 T
ra

ve
l T

im
e 

S
D

 (
m

in
s)

Route ID

Arterial Routes

Inbound Outbound



 

Road Reliability Measurement - Research Report 51 

Figure 4-17: Bidirectional travel time SD for freeway routes in Sydney 

 

4.3.3 Application of StrUE – Sydney Case Study 

The following case study of Sydney, Australia presents the value of StrUE traffic assignment in network 
modelling applications, especially in the scenario where travel time reliability is an essential network output of 
the modelling context. This case study highlights how StrUE can capture the impact of changing network 
infrastructure on reliability, at link, route and network levels. It should be noted that the focus of the case study 
is to present the differing outputs and comparative studies which are possible using the StrUE framework. It 
does not provide extensive details regarding the network preparation, zoning, demand data collection, or base 
model calibration and validation as these are fundamental network modelling principles applicable to all forms 
of network modelling.  Furthermore, the Sydney model has been developed using the data sources available 
within the project and a more comprehensive model can be developed with a more extensive data collection 
process.  

Figure 4-18 represents the network map of Sydney, which consists of 143 zones, 10,540 links and 5,745 
nodes. The following data sources were used to develop an 8AM to 9AM peak hour strategic model: 

 Calibration and Validation Data: Travel time data for 69 routes in Sydney collected for a period of 6 
months from April to September of 2018 using Google Maps API. The expected and standard deviations 
of travel time have been calculated during the defined morning peak hour of 8AM-9AM.  

 Demand Data: The trip table for the network was estimated using a machine learning approach12 such 
that the expected route travel times match with that of Google. Given that the OD matrix estimation is an 
underdetermined problem, multiple solutions for a trip table can exist that result in similar expected route 
travel times. Therefore, the developed matrix in the study may not be an accurate representation of real-
world data13 and needs further calibration and validation. However, as the purpose of this case study is to 
understand the application process, the feasible outputs and how they can be beneficial in measuring 
reliability as well as evaluating projects, this is not a critical component in this context. The project team 
has estimated the total expected demand of the network as 467,000 across a 1-hr peak period (8AM-
9AM). However, the StrUE framework assumes a demand distribution and this cannot be obtained through 
traditional household travel surveys. Therefore, for this demonstration, it is assumed that the demand 
follows a lognormal distribution with a mean demand of 467,600. The lognormal distribution ensures that 
the demand is always positive, unlike a normal distribution.   

 

12 Methods like Random Forest, Convolutional Neural Network (CNN). Deep Neural Network (DNN) have been used in determining the 
real-time OD matrix (Chang and Edara (2017) and Ou et al. (2019)). 

13 The main purpose of the case study is to demonstrate the applicability of the StrUE model rather than the calibration.  
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Figure 4-18: Road network for Sydney case study 

 

4.3.3.1 Calibration and Validation 

Like other strategic models, there are numerous mechanisms to calibrate a network model using StrUE as a 
traffic assignment technique. The options include: 

1. Comparing observed and modelled performance metrics (link volumes, link travel times and route travel 
times) using statistical approaches. 

2. Trend analysis and distribution fitting to ensure that the relationship between two performance metrics are 
consistent between observed and modelled conditions.  

3. Utilising Geoffrey E. Havers (GEH) metrics considering link volumes and travel times (Roads and Maritime 
Service Guide to Traffic Modelling, 2013). 

The second option was selected to calibrate and validate the case study presented in this guideline. Different 
standard deviation of demand (𝜎) values are considered for the demand distribution. 𝜎 represents the spread 
of the distribution, which implies that an increase in this parameter widens the distribution of total demand. The 
“𝜇” parameter which denotes the mean of the distribution was held constant so that that the average demand 
stays at the value of 467,000.  

Figure 4-19 presents the estimated relationship between CoV vs CI for various 𝜎 parameters of the StrUE 
model compared with the observed CoV vs CI values of the Google travel time data (points demarcated as X) 
of all the links along all the routes considered in the study. For a given CI, an increase in the σ parameter 
results in an increase in the coefficient of variation (CoV). Calibration involved comparing observed data to the 
modelled outputs.  

To effectively discern trends in the large quantity of observed data and also to compare with modelled outputs, 
a data synthesis process was carried out using an “average-range” method to reduce noise. The method 
involved averaging CoV estimates for ranges of CI. Root-mean square error (RMSE) has been calculated 
between the observed (scatter points marked as X) and predicted CoV (trendline for a given 𝜎) for different 𝜎 
parameters, and the one with the lowest RMSE was chosen, that is 𝜎 = 0.10 as the best-fit to the observed 
data. Therefore, in the context of this case study, the model has been adequately calibrated. 
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Figure 4-19: Observed vs predicted relationship between CI and CoV of Google links 

 

Note: The CoV-observed data are the averaged values for covariance ranges of all link data across all the routes this 
representation serves as a reflection of all the observed data 

4.3.3.2 Scenario Testing 

This section highlights both the reliability metric outputs that can be directly obtained from utilising the StrUE 
traffic assignment approach as well as the value of the approach in evaluating changes to the network from a 
reliability perspective.  Several scenarios have been tested and the resulting outputs are shown in the sections 
below. The network changes considered can be summarised as: 

 Scenario 1: Capacity of all links in the network increased by 10%  

 Scenario 2: The speed limits on all links decreased by 10 kph 

 Scenario 3: Capacity increase for a single link on the network. 

The first two scenarios consider network wide changes, while the third scenario reflects an infrastructural 
upgrade project that is commonly undertaken by transport authorities. For example, it is comparable to adding 
a lane on a major arterial road. The assumptions made for the scenario testing are: (i) the average demand is 
467,000, and (ii) SD of demand,𝜎 is 0.10. The StrUE framework allows testing of the impact of network 
modifications on travel time reliability, thus facilitating in a before-versus-after comparison.  

Scenario 1: Capacity of all links in the network increased by 10%  

The impact of increasing capacity of all the links by 10% on expected travel time, standard deviation of travel 
time, and CoV of travel times on all links in the network is analysed. Expectedly, for almost all the links, these 
metrics have decreased when compared to the base scenario. Table 4-7 presents percentage changes of 
outputs for a randomly selected sample of 10 links in the network, demonstrating the direct capability of the 
modelling approach. While a majority of the links (8 out of 10) show a drop in CoV as a result of capacity 
increase, 2 out of 10 links show a positive change which indicates an increase in CoV upon this intervention. 
The justification for this observation is as follows:  It was found for these two links that both mean and SD of 
travel time reduced as a result of the capacity increase, and both reductions are realistic. However, the 
improvement in travel time reliability (measured by SD of travel time) is not as significant as the reduction in 
mean travel time, and thus CoV increases. In summary, it can be observed that the increase in capacity had 
a positive effect on travel time savings as well as improved reliability.    
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Table 4-7: Scenario-1 - Percentage change in travel time metrics for randomly selected links in the network 

Route 
From Node 
Coordinates 

To Node 
Coordinates 

Suburb 
Link 

Length 
(m) 

% change 
in 

Expected 
TT 

% 
change 
in SD 
of TT 

% 
change 
in CoV 
of TT 

M1 General Holmes 
Dr 

-33.936771, 
151.1978781 

-33.9338887, 
151.2106665 

Mascot 1277 -11 -6 5 

A1 Pacific Highway 
-33.8354889, 
151.2053255 

-33.8276538, 
151.2006783 

North 
Sydney 

981 -4 -10 -6 

A34 Milperra Road 
-33.9360905, 
151.0109709 

-33.9298806, 
150.9908058 

Revesby 1991 -12 -13 -1 

A40 Botany Road 
-33.921096, 
151.1967991 

-33.9055165, 
151.2028326 

Alexandria 1869 -17 -59 -50 

A40 New South Head 
Road 

-33.8709482, 
151.251437 

-33.8724953, 
151.2598255 

Bellevue 
Hill 

885 -14 -7 9 

A1 Pacific Highway 
-33.8053918, 
151.1794154 

-33.8104226, 
151.1771309 

Artarmon 642 -9 -35 -29 

A8 Pittwater Road 
-33.7887083, 
151.2652612 

-33.7955396, 
151.2530601 

Balgowlah 1577 -5 -36 -32 

A40 Victoria Road 
-33.8166083, 
151.1093996 

-33.8160805, 
151.1039224 

Ryde 547 -7 -47 -43 

A1 Princes Highway 
-34.0238036, 
151.0890585 

-34.0266529, 
151.0850233 

Kareela 500 -3 -30 -28 

A44 The Horsley Dr 
-33.8886837, 
150.9695904 

-33.8846809, 
150.9674909 

Villawood 495 -15 -40 -29 

However, the benefit of the StrUE approach is that these above output metrics can be extracted for the entire 
network, providing a more holistic and comprehensive assessment, infeasible with the standard User 
Equilibrium approach. 

Figure 4-20, Figure 4-21 and Figure 4-22 show the percentage change in expected travel times, standard 
deviation, and coefficient of variation of travel times for routes from each zone to the CBD. The expected travel 
times decreased by 12% to 26%, whereas the standard deviations decreased by 7% to 41%, with most 
improvements seen in the North West region of Sydney (highlighted in dark green in Figure 4).  

The change in expected travel times is more homogeneous than the standard deviation. While there is 
significant reduction in expected TT from the North Shore and Inner West regions of Sydney, the reduction in 
SD of TT is not as much when compared to other regions.  
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Figure 4-20: Scenario-1 - Percentage decrease in expected TT from different zones to CBD 

 

Figure 4-21: Percentage decrease in SD of TT from different zones to CBD 
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Figure 4-22: Scenario-1 - Percentage change in CoV from different zones to CBD  

 

Note: -ve denotes reduction and +ve for increase. 

Appendix A6 presents a detailed discussion on the other two scenarios. This methodology offers direct 
estimation of standard deviation of travel time for each link and route of the network, thus providing a clear 
path to measuring and monitoring reliability. The scenario analysis clearly indicates that policies and 
infrastructure projects do not have homogenous impacts across a network or even within a sub-network. This 
emphasises the importance of network analysis that endogenously incorporates reliability within the modelling 
framework. 

4.3.4 Comparison between ARSD and StrUE 

Comparing the network travel time variability models is important to guide practitioners on use cases for both 
approaches. The assumptions underlying each method dictate the applications for both models. As presented 
in the previous sections of the report each model serves the following purpose: 

 The ARSD model is an empirical method to measure reliability at a route level using historical travel time 
data. The model exogenously accounts for reliability and does not capture route choice behaviour where 
travellers consider reliability in their decision-making process. Thus, the ARSD model is suitable to assess 
short term reliability impacts related to microscopic operational changes in the network. 

 StrUE is a traffic assignment methodology that could be substituted as the final step of a traditional 4-step 
travel model (such as STM). The model endogenously accounts for reliability capturing the concept within 
the route choice behaviour across the network. Accordingly, this form of modelling is ideal to assess 
network wide reliability impacts related to both localised and network modifications of the system. This 
approach is currently the only mechanism in the world which translates reliability as a part of the travel 
decision making process, which is iterated until a reliability inclusive traffic equilibrium is developed. This 
means that reliability metrics such as standard deviation of travel time are direct outputs of the model, 
providing a robust foundation of sensitivity testing and “what-if” scenario analysis of major infrastructure 
changes.  
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It is critical to emphasise that ARSD is useful as an efficient method to estimate variability impacts for localised 
modifications in the network. However, it is limited in providing a reasonable quantification of reliability for 
significant network changes or macroscopic policy implementation as it does not consider travel behaviour 
within the model framework. One the other hand, the use of StrUE within a strategic model can provide robust 
results for localized and network-wide changes at a system level. Accordingly, this approach is the preferred 
option when route choice and network impacts are anticipated such as in major infrastructure projects. StrUE 
can then be used for network reliability assessments of major infrastructure projects. 
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5 Summary and Next Steps 

5.1 Summary 

Link travel time variability  

Eleven different models to estimate link and route travel time variability were identified from the literature 
review. A numerical experiment was conducted comparing the three shortlisted models from the literature 
review along with an ‘ATAP’ model, of which the latter was found as a better fitting model. The ATAP link 
model was calibrated using the entire NetPReS dataset. Two separate ATAP models were calibrated, one 
each for the arterial and freeway data in the entire NetPReS dataset. The model calibration was undertaken 
using linear regression (for Equation 3.2) in MS-Excel and then converting back Ln(CoV) into CoV. The 
estimated parameters were found to be statistically significant at 95% confidence and the R-squared value 
was close to 0.56 for arterial and 0.67 for freeway. A visual validation of the two ATAP models was also 
undertaken on datasets from other jurisdictions (Gold Coast Bluetooth data and Sydney Google data) and both 
the models were found to have a reasonable goodness-of-fit. Thus, this project recommends the use of the 

ATAP link model, given in Equations 4.2 (that is 𝑪𝒐𝑽 = 𝟎. 𝟓𝟗𝟑𝟗. ቀ
𝑪𝑰ି𝟏

𝑪𝑰
ቁ

𝟎.𝟗𝟔𝟖

 ∀ 𝑪𝑰 ≥ 𝟏) and 4.3 (that is 𝑪𝒐𝑽 =

𝟎. 𝟕𝟗𝟏𝟑. ቀ
𝑪𝑰ି𝟏

𝑪𝑰
ቁ

𝟏.𝟎𝟖

 ∀ 𝑪𝑰 ≥ 𝟏), to determine link travel time variability nationally.  

Some limitations of the developed ATAP model are as follows. Firstly, not considering the effect of other factors 
such as weather, incidents, events, number of roundabouts and bottlenecks, geometric conditions on CoV. 
Some of that information was not available in the data used under this project, others such as weather-related 
information did not showed noticeable impact on travel time variation. Secondly, the calibrated models might 
perform sub-par (with regard to the goodness-of-fit) on other jurisdictional data. This is mainly due to significant 
geographical differences in the traffic characteristics which could affect travel time variability in that jurisdiction. 
Nonetheless, it is expected that the model would perform reasonably well when applied on other jurisdictional 
data, with some variations attributed to the level of error in the model and local traffic characteristics.  

Route travel time variability  

Two methods of determining route travel time variability were identified in the literature, of which the SD based 
approach was selected due to its advantages. The CRM recommended by Nicholson (2015) expresses route 
travel time SD in terms of: (i) travel time SD of constituting links and (ii) the degree of correlation between 
these links. While the former can be determined using an appropriate ATAP model (for arterial/freeway), the 
latter can be modelled using CCM and the ATAP link model. Three different functional forms (exponential, 
shifted exponential and linear-log) for the CCM were tested on the entire NetPReS dataset. The entire dataset 
was segregated into 16 sub-samples based on road type (arterial/freeway), directionality (inbound/outbound) 
and time of the day (AM, inter, PM, off) as classifiers. The models were calibrated on each sub-sample. The 
exponential function (proposed in the literature) and the shifted exponential functional forms were found to 
have a poor goodness-of-fit statistics (e.g., R-squared) when compared to the linear-log form. The estimated 
parameters for the linear-log model, which were obtained using the linear regression technique, were also 
found to be statistically significant at 95% confidence. Thus, the linear-log form (that is, 𝝆𝒊,𝒋 =

 𝑴𝒂𝒙[𝟎, 𝒂 × 𝐋𝐧(𝐋) + 𝐛]) has been recommended as the CCM for this project. The validation of the CRM was 
conducted using the route-level information available in the NetPReS dataset. The results from the validation 
were found to be satisfactory.  

Some limitations of the CRM model are as follows. Firstly, the CCM only considers distance as the explanatory 
variable. It does not take into consideration other attributes due to lack of availability in the current NetPReS 
dataset, e.g., bottle-neck effects, which could potentially influence CCM. Secondly, the CRM has been 
calibrated and validated using the NetPReS data which might lead to poorer model fit for the data from other 
jurisdictions. Thus, practitioners need to re-calibrate the CRM using available data if required. 
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Network level travel time variability  

For the network level travel time reliability modelling, this project explored two novel methodologies namely, 
the Approximate Route SD (ARSD) and the Strategic User Equilibrium (StrUE). The ARSD method applies a 
correction factor to the summation of individual links SD to obtain route travel time SD. Another numerical 
experiment was developed to assess the impact of the correction factor in the ARSD method. The correction 
factor value was then calibrated using the arterial and freeway routes in the full NetPReS dataset. The ARSD 
approach was applied to the Sydney case study to determine travel time variability on a few selected routes. 
Similarly, the application of StrUE model was also developed on the same Sydney case study to assess the 
impact of route travel time reliability in network assignment. StrUE is able to evaluate network wide reliability 
impacts, as it endogenously considers the impact of variability on route-choice and vice-versa. While the ARSD 
is an efficient method to estimate variability impacts for localised modifications in the network, it does not take 
into consideration its impact on route choice. On the other hand, StrUE, although more complex to develop 
than ARSD, is a more methodologically robust approach which endogenously takes into consideration travel 
time variability and its impact on route choice.  

5.2 Limitations of the Work 

This project has presented a new calibrated formulae and recommended methodologies for the practitioners 
to estimate travel time variability, and hence travel time reliability, in a consistent and principled way. As with 
any model development process, each phase of development is limited by scope, budget and timing. There is 
always room for further development and enhancements, especially in the context of travel time reliability 
where a general model would be expected to require further calibration to the local network, as road networks 
are subtly different, regionally and locally. 

The limitations of this project at the present time are noted as follows: 

 The link model (ATAP model) only considers the CI as an explanatory variable for modelling. The model 
did not take into consideration the effect of other attributes on travel time variability due to no noticeable 
impact on travel time reliability such as weather or traffic incidents and due to the lack of relevant 
information in the analysed datasets (discussed in sub-section 2.1.3). Similarly, the CCM model considers 
only link length as the explanatory variable. The extent of this limitation is low to medium which can be 
justified as follows: The ATAP link model has an RMSE value of around 0.1 on the NetPReS dataset which 
signifies an acceptable goodness-of-fit. While adding more explanatory variables will certainly lower this 
RMSE further, the extent is not expected to be significant. A similar justification can be made for the CCM 
which also indicates lower RMSE values (in the range of 0.1 and 0.2).  

 For the CRM, instantaneous link travel times are considered to determine the route travel time. For 
example, the prevailing travel times for all links in a route at 9:00 am are added to determine route travel 
time. The model does not take into consideration the prevailing travel time from the actual time of arrival 
on a link, which is a more physically correct way to measure route travel time. The extent of this limitation 
is low. Even though the past research shows difference between instantaneous and experienced travel 
times which could impact the goodness of the CRM (Chiu et al., 2011), the assumption was found to be 
accurate to within 4% on average (Moylan et al., 2018). 

 The CRM is composed of two sub-models, the ATAP link model and the CCM, and the unobserved errors 
associated with each tend to accumulate while estimating route travel time variability using the CRM. 
Attention to calibration with good quality local datasets will improve the CRM. The extent of this limitation 
is low which can be justified as follows: The RMSE heatmaps for CRM (Figure 4-11 and Figure 4-12) and 
the frequency distribution of the RMSE values (Figure 4-13) indicate that a majority of the values are 
around 0.5 which corresponds to an acceptable fit. Minimising unobserved errors by introducing more 
explanatory variables each in the ATAP link model and the CCM will further decrease the average RMSE 
value, but the scale is not expected to be significant. 

 The calibration parameter γ value used in the ARSD method (Equation 3.4) has been calibrated using the 
NetPReS data. The parameter γ value would be improved with local calibration. Thus, practitioners are 
advised to re-calibrate the ARSD formula using their available data, if required. The extent of this limitation 
is medium as every jurisdiction has its own traffic characteristics and dynamics, and using the calibrated 
γ value given in this report might lead to greater errors in the method, that is ARSD, which in itself is an 
approximation to begin with. 
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Appendix A 

A1 Literature Review of Link and Route Models 

This appendix provides a detailed discussion on the 11 link and route level models, for forecasting SD of travel 
time, that have been listed in Table 2-3 of the main report. 

A1.1 UK Model (UKM) 

The UK Model (UKM) was first developed and estimated by Arup (2003) using London and Leeds data 
collected in 1993 and 2003. The UK model was also estimated using Australia and New Zealand Data. The 
data used to develop models for the Australian context was collected through Google Maps. Equation A.1 
provides the expression for the UKM, while Table A-1 provides the associated parameter values.  

𝑪𝒐𝑽 = 𝒂 ቆ
𝑻

𝑻𝒇
ቇ

𝒃

𝑫𝒄 [EQ A.1] 

Where: 

𝐶𝑜𝑉 = coefficient of variation, 
ఙ

்
 

𝜎 = SD of travel time (in s) 
𝑇 = mean travel time (in s) 
𝑇  = free flow travel time (in s) 

𝐷 = length of link (in m) 
a, b, c = parameters 
 
Table A-1: Calibrated parameter values for the UKM 

Source Location 
a 

(Constant) 

b 

(T/Tf) 

c 

(Length) 

UK Transport Guidelines  UK 0.16** 1.02** -0.39** 

Osterle et al. (2017) 

Adelaide 0.034** 6.54** -0.04* 

Auckland 0.085** 2.97** -0.09** 

Brisbane 0.028** 4.34** 0.01 

Canberra 0.032** 4.79** -0.01 

Darwin 0.030** 8.74** -0.09 

Hobart 0.038** 5.17** -0.05 

Melbourne 0.060** 3.22** -0.03 

Perth 0.051** 6.19** -0.10** 

Sydney 0.117** 2.47** -0.08** 

Wellington 0.028** 5.48** -0.05 

All cities 0.044*** 3.96*** -0.03 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
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A1.2 Log-linear Model (LLM) 

A log-linear model (LLM) is an alternative formulation to the UKM model. It is a different expression of the UKM 
but transformed by natural logarithms of the Equation A.1. While both the UKM and the LLM are inter-
convertible, the LLM has been considered in the past studies, and hence included in this review. The model 
and parameters are calibrated for key roads in Australian and New Zealand. A stratification of the model based 
on approximate speed zone is also proposed. Note that the adoption of this model would require the results to 
be converted into minutes rather than seconds. Equation A.2 provides the expression for the LLM, while Table 
A-2 provides the associated parameter values. 

𝑳𝒏(𝑪𝒐𝑽) = 𝑳𝒏(𝒂) + 𝒃 × 𝑳𝒏 ቆ
𝑻

𝑻𝒇
ቇ + 𝒄 × 𝑳𝒏(𝑫) [EQ A.2] 

Where: 

𝐶𝑜𝑉 = coefficient of variation, 
ఙ

்
 

𝜎 = SD of travel time (in min) 

்

்
 = congestion index 

𝑇 = mean travel time (in min) 

𝑇  = free flow travel time (in min) 

𝐷 = length of link (in m) 

a, b, c = parameters 

 

Table A-2: Calibrated parameter values for the LLM 

Source Location 
Ln(a) 

(Constant) 

b 

Ln (T/Tf) 

c 

Ln(Length) 

Osterle et al. (2017) 

Adelaide -3.374** 6.541** -0.0408* 

Auckland -2.466** 2.974** -0.0923** 

Brisbane -3.562** 4.342** 0.0108 

Canberra -3.434** 4.793** -0.00721 

Darwin -3.52** 8.742** -0.086 

Hobart -3.283** 5.17** -0.0499 

Melbourne -2.814** 3.221** -0.0318 

Perth -2.98** 6.194** -0.103** 

Sydney -2.144** 2.466** -0.0816** 

Wellington -3.587** 5.477** -0.0483 

All Cities -3.128*** 3.959*** -0.0328 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
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A1.3 New Zealand Model (NZM) 

The New Zealand Model (NZM) is also called the travel time variability model. The purpose of the model is to 
estimate travel time variability on a single link. This approach is fundamentally based on a mathematical 
relationship between the level of congestion (measured in V/C ratio) and the SD of travel time. It allows the 
estimation of the variability on individual road links using information on the volume and capacity of that link. 
A limitation of the model is that any additional travel time variability due to major incidents (crashes or 
breakdowns) are not included in the analysis which must be estimated separately. Equation A.3 provides the 
expression for the NZM, while Table A-3 provides the associated parameter values. 

𝝈 = 𝝈𝟎 +
𝝈𝟏 − 𝝈𝟎

𝟏 + 𝒆𝒃ቀ
𝑽
𝑪

ି𝒂ቁ
 [EQ A.3] 

Where: 

𝜎 = SD of travel time (in min) 

𝜎 = lower limit of SD (in min) 

𝜎ଵ  = upper limit of SD (in min) 




= volume (demand) to capacity ratio 

𝑎, 𝑏 = parameters 

 
Table A-3: Calibrated parameter values for the NZM 

Source Road stereotype 0 1 a b 

New Zealand Economic 
Manual as cited in 
Moylan et al. (2018) 

Motorway 0.083 0.90 1 -52 

Urban arterial 0.117 0.89 1 -28 

Urban retail 0.150 0.87 1 -16 

Urban other 0.050 1.17 1 -19 

Rural 0.033 1.03 1 -22 

Moylan et al. (2018) 
Sydney motorway 0.040 2.07 1 -52 

Sydney arterial 0.092 5.22 1 -28 

From Tables A-1 to A-3, the parameters adopted in the UKM and the NZM varied among the countries and 
cities. These variations may be due to the geographical characteristics of their transport network configuration, 
land use planning and the provision of public transport. As the operation of toll routes is beyond the scope of 
this report, all routes/links studied are open to free public access. 
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A1.4 Unified Reliability Model (URM) 

Moylan et al. (2018) proposed the unified reliability model (URM). The URM model is an adaptation of the 
UKM. It aims to overcome the limitations of other models that tend to focus on travel time, trip length and traffic 
flow as the key independent input variables that affect reliability. The URM aims to capture additional factors 
like temporal impacts including but not limited to time of the day, proximity to urban centres and road capacity 
limitations of the network. It also tries to overcome the issue of variation of time-periods, infrastructure types 
and location which will typically require outputs from multiple different models. The development of the final 
URM model requires interim modelling steps. The final URM model removes any collinearity between the 
variables which reduces the equation to the form that only includes significant variables. As stated in the report, 
no local streets were involved in model comparison, calibration and validation. Typically, the model had an 
adjusted R2 of 0.59 for the data indicating a decent goodness-of-fit of the model. Equation A.4 provides the 
expression for the URM, while Table A-4 provides the associated parameter values. 

𝝈 = 𝑲𝑻𝒂𝑫𝒃 [EQ A.4] 

Where: 

𝜎 = SD of travel time (in s) 

𝐾 = 𝑒ାௗାା  

𝐶 = capacity in pceu/h/ln ൜
2,200 𝑓𝑜𝑟 𝑚𝑜𝑡𝑜𝑟𝑤𝑎𝑦

1,800 𝑓𝑜𝑟 𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙
 

𝑃 = 1 if peak period, 0 otherwise 

𝐺 = route type ቐ
0 𝑓𝑜𝑟 𝑖𝑛𝑛𝑒𝑟 𝑟𝑖𝑛𝑔 𝑟𝑜𝑢𝑡𝑒𝑠

1 𝑓𝑜𝑟 𝑚𝑖𝑑𝑑𝑙𝑒 𝑟𝑖𝑛𝑔 𝑟𝑜𝑢𝑡𝑒𝑠
2 𝑓𝑜𝑟 𝑜𝑢𝑡𝑒𝑟 𝑟𝑖𝑛𝑔 𝑟𝑜𝑢𝑡𝑒𝑠

 

𝑇 = mean travel time (in s) 

𝐷 = link length (in km) 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 = parameters 

 

Table A-4: Calibrated parameter values for the URM 

 a b c d e f 

Related factor Mean travel time Link length Constant Capacity Peak period Route type 

Parameter value 2.8496 -1.8875 -19.0339 0.0044 0.3923 0.2517 

Source: Moylan et al. (2018) 
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A1.5 Linear Model (LM) 

The linear model (LM) is a simple linear equation that relates the mean travel time to the SD. The linear model 
was developed by Hellinger (2011) as cited in Kouwenhoven and Warffemius (2017). Travel times were 
derived from detection loop data, averaged over 15-minute periods. Each 15-minute period represented one 
data point. It excluded trips after 11PM. The final dataset consisted of 92 points. The model was found to have 
an adjusted R2 of 0.75 for the morning peak period. The study concluded that a linear relationship was 
sufficient for shorter routes. There were limitations associated with the model for longer routes as a decreasing 
slope was observed on the longer routes under traffic congestion (Kouwenhoven and Warffemius, 2017). 
Equation A.5 provides the expression for the LM, while Table A-5 provides the associated parameter values 

𝝈 = 𝒂 + 𝒃𝑻 [EQ A.5] 

Where: 

𝜎 = SD of travel time (in min) 

𝑇 = mean travel time (in min) 

𝑎, 𝑏 =parameters 

 
Table A-5: Calibrated parameter values for the LM 

 a b 

Parameter value 0.71 0.17 

Source: Kouwenhoven and Warffemius (2017) 

Figure A-1 shows a plot for the morning period for which the LM has the best model fit. 
 
Figure A-1: Linear model (LM) for morning peak and the line of best fit 
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A1.6 Length Standardised Linear Model (LSLM) 

This length standardised linear model (LSLM) was developed as part of the Strategic Highway Research 
Programme (SHRP2) by Mahmassani et al. (2014), as cited by Kouwenhoven and Warffemius (2017). It 
models the SD of travel time for different road lengths. This network model approach has an advantage that it 
can also be applied if multiple routes are used between A and B with different lengths. It is especially suitable 
for dense urban networks. The mode which relates travel time per unit length and SD per unit length was found 
to depict a high goodness-of-fit value (R2 = 0.78). Equation A.6 provides the expression for the LSLM, while 
Table A-6 provides the associated parameter values. 

𝝈

𝑳
= 𝒂 + 𝒃

𝑻

𝑳
 [EQ A.6] 

Where: 

𝜎 = SD of travel time (in min) 

𝑇 = mean travel time (in min) 

𝐿 = length (in km) 

𝑎, 𝑏 = parameters 

 
Table A-6: Calibrated parameter values for the LSLM 

 a b 

Parameter value -0.41 0.78 

Source: Kouwenhoven and Warffemius (2017) 
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A1.7 Length Standardised Cubic Model (LSCM) 

The length standardised cubic model (LSCM) was developed by Mott McDonald in the UK (cited by 
Kouwenhoven and Warffemius (2017)). The LSCM forecasts day-to-day changes in travel time after 
accounting for all predictable variations (time of day effects, day type effects and seasonal effects) and 
variability due to incidents. The data was collected by inductive loop sensors, automatic number plate 
recognition and matching and GPS tracking averaged over 15-minute periods on several highway routes. 
Incidents were controlled for by removing data points that were 2 SD above the mean. Mean journey time per 
kilometre versus SD per kilometre for several motorway types was also presented. They presented graphs 
with mean journey time per kilometre versus SD per kilometre for several motorway types. The SD of travel 
time per kilometre was presented as a cubic polynomial of the mean travel time per kilometre. The conclusions 
of the Kouwenhoven and Warffemius report (2017) was that a linear function was sufficient for expressing the 
SD per kilometre as a function of the travel time per kilometre, and that applying a cubic polygon does not 
improve the fit. Equation A.7 provides the expression for the LSCM, while Table A-7 provides the associated 
parameter values. 

𝝈

𝑳
= 𝒂 + 𝒃

𝑻

𝑳
+ 𝒄 ൬

𝑻

𝑳
൰

𝟐

+ 𝒅 ൬
𝑻

𝑳
൰

𝟑

 [EQ A.7] 

Where: 

𝜎 = SD of travel time (in min) 

𝑇 = mean travel time (in min) 

𝐿 = length (in km) 

𝑎, 𝑏, 𝑐, 𝑑 = parameters 

 
Table A-7: Calibrated parameter values for the LSCM 

 a b c d 

Parameter value -0.09 -0.38 1.37 -0.5 

Source: Kouwenhoven and Warffemius (2017) 

Figure A-2 compares the two model fit lines: 1) LSLM (red) vs. LSCM (green). Both have an R2 of 0.78. 
 
Figure A-2: Travel time per km vs. SD per km. Comparison of LSLM (Red) against LSCM (Green) 
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A1.8 Exponential Coefficient of Variation Model (ECVM) 

The exponential CoV model (ECVM) model was developed by Eliasson (2006) and cited by Kouwenhoven 
and Warffemius (2017). Eliasson (2006) fitted an exponential function to the CoV for 20 roads and for 96 
fifteen-minute periods in Stockholm, Sweden. The road lengths analysed varied between 300m and 5km. 
Equation A.8 provides the expression for the ECVM, while Table A-8 provides the associated parameter 
values. 

𝑪𝒐𝑽 = 𝒆𝒙𝒑 ൭𝒂 + 𝒃 ቆ
𝑻

𝑻𝒇

− 𝟏ቇ + 𝒄 ቆ
𝑻

𝑻𝒇

− 𝟏ቇ

𝟑

൱ [EQ A.8] 

Where: 

𝐶𝑜𝑉 = coefficient of variation, 
ఙ

்
 

𝜎 = SD of travel time (in min) 

𝑇 = mean travel time (in min) 

𝑇  = free flow travel time (in min) 

𝑎, 𝑏, 𝑐 = parameters 

 
Table A-8: Calibrated parameter values for the ECVM 

 a b c 

Parameter value -2.79 3.21 -0.65 

Source: Kouwenhoven and Warffemius (2017) 

The model indicated that the CoV remained roughly constant for lower levels of congestion and increased for 
slightly higher levels. At high levels of congestion, the CoV decreased again. Figure A-3 provides the CI (x-
axis) vs. the CoV (y-axis) for the two models: 1) The red being a power law model (not evaluated in this paper), 
and 2) the exponential function (green line). From the data it was observed that low congestion levels did not 
appear to have a roughly constant CoV. A justification for this could be that the data included more of longer 
highway routes rather than shorter urban routes (Kouwenhoven and Warffemius, 2017). There were also 
insufficient data points at high congestion levels, so it may be difficult to establish if the data aligns with the 
predicted model behaviour. 
 

Figure A-3: CI vs. CoV for 250 routes. Exponential function in Green 
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A1.9 Power Mean Delay Model (PMDM-1) 

The power mean delay model (PWDM-1) was developed by Geistefeldt et al. (2014) and cited by 
Kouwenhoven and Warffemius (2017). The aim was to develop a reliability of travel time on their highways. 
The coefficients were simulated from a macroscopic traffic simulation model. The suggested model used a 
power-law function between the SD and the mean delay (that is the difference between the mean travel time 
and free flow travel time). The model had a goodness of fit of R2 = 0.82. The mean delay as an explanatory 
variable may be appropriate for model development. Equation A.9 provides the expression for the PMDM-1, 
while Table A-9 provides the associated parameter values. 

𝝈 = 𝒂𝑫𝒃 [EQ A.9] 

Where: 

𝜎 = SD of travel time (in min) 

𝐷 = mean delay (in min) 

𝑎, 𝑏 = parameters 

 
Table A-9: Calibrated parameter values for the PMDM-1 

 a b 

Parameter value 1.63 0.73 

Source: Kouwenhoven and Warffemius (2017) 

Figure A-4 on the following page presents the PMDM-1 model. The PMDM-1 model is presented alongside 
another model, the Polynomial Mean Delay Model (PMDM-2) which is presented next.  
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A1.10 Polynomial Mean Delay Model (PMDM-2) 

The polynomial mean delay model (PMDM-2) was developed by Peer et. Al (2012) and cited in Kouwenhoven 
and Warffemius (2017). It is an estimation between the SD and the mean delay. In principle, the mean delay 
is the difference between the observed and free flow travel times. The authors tried multiple functions on data 
from 145 highway routes across 57 fifteen-minute periods. The recommended function included, but were not 
limited to, a cubic polynomial in the mean delay and a quadratic polynomial in the length. The R2 of the model 
was approximately 0.96 which is a very good fit to the data. Equation A.10 provides the expression for the 
PMDM-2, while Table A-10 provides the associated parameter values. 

𝝈 = 𝒂 + 𝒃𝑫 + 𝒄𝑫𝟐 + 𝒅𝑫𝟑 + 𝒆𝑳 + 𝒇𝑳𝟐 [EQ A.10] 

Where: 

𝜎 = SD of travel time (in min) 

𝐷 = mean delay (in min) 

𝐿 = length (in km) 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 = parameters 

 
Table A-10: Calibrated parameter values for the PMDM-2 

 a B c D e f 

Parameter value -0.04 1.18 -0.03 0.005 -0.003 -0.00003 

Source: Kouwenhoven and Warffemius (2017) 

Figure A-4 presents the plot in which the green curve is the PMDM-2 while the red curve is PMDM-1. 
 
Figure A-4: Plot comparing PMDM-1 (Red) against PMDM-2 (Green) 
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A1.11 Dutch Model (DM) 

The Dutch model (DM) was developed by Kouwenhoven and Warffemius (2017) following a review of many 
of the previous models. Their conclusions included that the best empirical relationship to describe reliability 
was an expression of the SD as a function of the mean delay and length of the route. Other functional forms 
that were reviewed had a much lower adjusted R2 or showed a behaviour that was not supported by the data. 
The Dutch model was a combination of a linear and logarithmic function for the mean delay and added a linear 
term in the length. Higher order terms and the terms proportional to other parameters such as density, number 
of lanes, average weather conditions, and frequency of incidents, were not found to be significant. The data 
was also delineated into morning peak, mid-day and afternoon peak. Equation A.11 provides the expression 
for the DM, while Table A-11 provides the associated parameter values. 

𝝈 = 𝒂 + 𝒃𝑫 + 𝒄 𝒍𝒐𝒈𝟏𝟎(𝑫 + 𝟏) + 𝒅𝑳 [EQ A.11] 

Where: 

𝜎 = SD of travel time (in min) 

𝐷 = mean delay (in min) 

𝐿 = length (in km) 

𝑎, 𝑏, 𝑐, 𝑑 = parameters 

 
Table A-11: Calibrated parameter values for the DM 

 a b c D 

Parameter value -0.54 0.48 4.54 -0.009 

Source: Kouwenhoven and Warffemius (2017) 

Figure A-5 presents the DM fitted on the morning peak data. The model had an R2 = 0.96 which was much 
higher than the previously evaluated models. 
 
Figure A-5: The DM fitted to morning peak data 
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A2 Numerical Experiments 

This appendix presents three numerical experiments which were conducted under this project. The first two 
experiments correspond to the link models, one comparing all reviewed (eleven) models and the other 
comparing only the shortlisted (four) models. The third numerical experiment is conducted to test the ARSD 
method at a network level.  

A2.1 Comparing Reviewed Models  

Equation A.12 shows the Bureau of Public Roads (BPR) function used to compute link travel time using a 
given V/C ratio.  

𝑻 = 𝑻𝒇 ቆ𝟏 + 𝒂 ൬
𝑽

𝑪
൰

𝒃

ቇ [EQ A.12] 

Where: 

𝑇 = mean travel time (in min) 

𝑇  = free flow travel time (in min) 

𝑉 = volume (in pceu/h) 

𝐶 = capacity (in pceu/h) 

𝑎, 𝑏 = parameters (𝑎 = 0.474, 𝑏 = 4) 

Figures A-6 and A-7 show the travel speed and CI as a function of BPR for a given free flow speed. 
 
Figure A-6: Speed versus V/C ratio, BPR function with free flow speed of 80 km/h 

 

 

 

 

 

 



 

Road Reliability Measurement - Research Report 77 

Figure A-7: Congestion index versus V/C ratio, BPR function with free flow speed of 80 km/h 

 

Route based measure is the most logical way to assess travel time reliability. In some cases, particularly for 
arterial roads, a route may contain a few links which are in different road classes. As a result, the mixed speeds 
and road capacities may introduce more errors into models. The use of 1 km length in the numerical 
experiments was to test the performance of models under a similar situation (On a similar link, the T/Tf will be 
approximately the same).  

A2.1.1 Volume (Demand) to Capacity (V/C) Approach 

The ability to compare the models is an important part of this literature review, as it enables examination of the 
models’ attributes to reasonably predict the CoV and SD of travel time based on V/C ratio and a CI, and test 
the likely relationship between the CoV and SD of travel time and link length. 

The results from the numerical experiment are as follows: 

 CoV and SD of travel time under various congestion levels are shown in Figure A-8 where the independent 
variable is the V/C ratio with volume equal to demand and Figure A-9 where the independent variable is 
the CI, all cases assuming link length is 1 km. 

 CoV and SD of travel time under various link lengths up to 2 km are shown in Figure A-10 (assuming a 
V/C ratio of 1.2). 

There are eleven models that we have considered but the figures present a total of 13 results as there are two 
UKM and NZM versions. These being the UKM – UK version and UKM – Australia version and the NZM – NZ 
arterial version and NZM – Sydney arterial version. The results are presented in two charts each, the chart on 
the left with six of the models and the chart of the right with the remaining 7 models. 

In Figure A-8 below, the first two charts on the top half of the figure show the relationship between CoV and 
V/C. Similarly, the two charts on the bottom half show the relationship between SD of travel time (in minutes) 
and V/C. 
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Figure A-8: CoV and SD of travel time versus V/C ratio on arterial highway – existing models 

 

 

The desired travel time reliability model needs to be capable of correctly predicting both CoV and SD of travel 
time based on the required input data. From the eleven models reviewed, three models focused on estimation 
of CoV. Eight models focused on estimation of SD of travel time. The values of CoV and SD of travel time are 
interchangeable by using formula: CoV = SD of travel time / mean travel time. The relationship of CoV and SD 
of travel time with V/C ratio are plotted for all the eleven models in Figure A-8. 

The predicted value of travel time reliability or SD of travel time by those 11 models are consistent for V/C ratio 
below 1, except LM, and DM. For V/C ratio above 1, the trends predicted by those models alter significantly. 
Most models predict the value for SD of travel time will increase as V/C ratio increased e.g. UKM, LLM, URM, 
LM, LSLM, PMDM-2 and DM, NZM predicts a constant SD of travel time when the V/C ratio reaches a certain 
point (V/C = 1.1 or 1.2), while others models namely LSCM and ECVM predict the value for SD of travel time 
will decrease as V/C ratio increased. 

For travel time CoV graphs, the conflict between trends predicted by different models for V/C ratio greater than 
1 is also observed. However, a majority of the 11 models predict the value of CoV to decrease as V/C ratio 
increases, those models are NZM, LM, LSCM, ECVM, PMDM-1, PMDM-2 and DM. The cause of the decline 
in the CoV in those models were examined. The explanation is that the decline is due to the difference in the 
rate of increase for SD of travel time and travel time when V/C ratio increases. Using the NZM as an example, 
when the V/C ratio reaches a certain point (V/C = 1.1 or 1.2), the SD became constant. However, the travel 
time continues to increase thus causing a divergence in the CoV chart. 

On the left-hand side of Figure A-8, the UKM, URM and LLM models display a higher than anticipated rate of 
increase for CoV and SD of travel time when V/C ratio operated at higher values above 0.8. An unrealistic 
sharp increase in dependent variable (CoV or SD) of these models could cause an overestimation of travel 
time reliability cost. Two other models namely the DM and LSCM forecast negative CoV. 
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A2.1.2 Congestion Index Approach 

As the purpose of this study is to look at travel time reliability, a CI approach was utilised instead of the V/C 
ratio approach (discussed earlier in sub-section 2.2.1, p16). Therefore, Figure A-8 was converted into Figure 
A-9 below by using Equation A.12. A CI value below 1 is an indication of vehicles operating at higher than the 
speed limit. The most appropriate models would be expected to show that an increase in CI should not 
decrease the CoV for travel time. 

The findings based on the application of a CI approach produced similar results as the V/C approach in the 
earlier in Figure A-8. 
 
Figure A-9: CoV and SD of travel time versus congestion on arterial highway – existing models 

  

  

A2.1.3 Link Length Approach 

Finally, a numerical analysis on how link length could potentially affect the CoV and SD of travel time for each 
of the models was undertaken. Figure A-10 presents the outputs of the eleven models. The NZM and LM 
models tended to return a high value of coefficient of variance when link lengths are short while other models 
produced more stable values. As demonstrated in Equations A.7 and A.11, the LSCM and DM contain some 
negative parameters, such as “a” and “d” in DM and ‘a”, “b” and “d” in LSCM. These models were flagged due 
to having negative outputs in CoV and SD of travel time for link lengths below 280m. All models gave higher 
SD of travel time for longer link lengths except for the NZM. 
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Figure A-10: CoV and SD of travel time versus length of travel on arterial highway 

  

 

A2.2 Comparing Shortlisted Models 

This sub-section of the appendix presents the numerical experiment, discussed in the sub-section 3.1.2 of the 
report, involving the ATAP link model and the other three shortlisted models (the UKM, NZM and DM). The 
characteristics of the hypothetical segment (an arterial) considered in the numerical experiment have been 
discussed in sub-section 2.2.1 of the report. For the UKM, both the UK and Australian versions were modelled. 
Similarly, for the NZM, both the NZ arterials and Sydney arterials were modelled. In other words, a comparison 
is made over six models instead of four stated earlier.  

As the NZM and DM consider SD while UKM and ATAP model treat CoV as the dependent variable, two sets 
of plots were developed to compare the results: 

 CoV versus CI, and 

 SD versus CI. 

Figure A-11 presents each of the models where the CI is the independent variable (on X-axis). The plot on the 
left-hand side shows its relationship with respect to the CoV while the one on the right is for the SD. As shown 
in the figure, UKM-UK forecasts a very low rate of change in the CoV and the SD which is not consistent with 
the real-world. The UKM-Australia estimates an unbounded and sharply increasing CoV and SD which is 
unrealistic. The NZM-Sydney also has a vertical and an unbounded CoV but forecasts a constant SD value as 
CI increases. Similarly, NZM-NZ also shows a stable SD as CI increases and shows a decreasing trend in the 
CoV. The DM shows a reasonable curve for both the CoV (a stable value at higher CI) and the SD (increasing 
steadily with CI), however the model predicts negative values at lower congestion. The ATAP link model shows 
similar curves as the DM and does not give negative values. Furthermore, the slopes of the curves are steadier 
when compared to the DM which forecasts an abrupt transition. Thus, based on the above discussion, the 
ATAP link model does reasonably well when compared to other shortlisted models. 
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Figure A-11: CI vs. CoV or SD of travel time – numerical experiment 

   

In addition to the numerical experiment, the Perth NetPReS data was utilised to show the observed relationship 
between travel time SD and CoV with link length in the real-world data, as shown in Figure A-12. Figure A-13 
plots the trendlines of the six models to allow for direct comparison against the NetPReS trend. The NerPReS 
trend in Figure A-12, where the variation in travel SD increases as the link length increases while link length 
does not appear to impact on the variation in CoV, confirmed our previous findings that travel time SD is length 
dependent and travel time CoV is not length dependent.  

Figure A-12: SD & CoV vs link length < 2km – NetPReS Dataset 

 

The trend in Figure A-12 above is used as a benchmark for best-fit model selection. The best-fit model should 
present reasonable consistent trend as the Perth NetPReS trend. By comparing different models’ SD and CoV 
trend in Figure A-13, where CoV should be length independent and SD should be length dependent, only the 
UKM-Australia and ATAP model matched this condition.  

Figure A-13: SD & CoV vs link length – numerical experiment 

     

In consideration of the limitations of those shortlisted models identified in Section 3.1.2 and above, the ATAP 
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link model was deemed to be the final selection of best-fit model for travel time SD estimation on a link. 

A2.3 Determining Correction Factor in ARSD Approach  

The conceptualisation of the ARSD approach, presented earlier in sub-section 3.3.1, was motivated by 
hypothesising that it may be adequate to approximate route travel time SD as the sum of the SD of the 
constituent links multiplied by a global correction factor. If this can be shown to be sufficient for determining 
route choice and link flows, then the incorporation of the travel time reliability in network assignment can be 
greatly simplified. This could be done by amending the link cost function with an additive term that is 
proportional to the SD of link travel time (e.g., Equation 3.4). It is only necessary that the ARSD approach be 
sufficient for route choice modelling to determine links flows. Once links flows are determined the route travel 
time SD can be calculated using more accurate methods (that is, Equation 2.3 and Equation 2.4). 

To examine the ARSD approach, the correction factor (γ) in Equation 3.4 was tested through a numerical 
experiment using Equation 2.3 and Equation 2.5. Nicholson (2015) determined that the parameter ‘a’ in 
Equation 2.5 to be equal to -0.05. This represented the level of correlation between the links in a real-world 
route. The route considered in the numerical experiment was assumed to be composed of multiple links each 
of length 300m. A variety of scenarios, as summarised below, were then developed and tested: 

 Scenarios where individual links are highly (a = -0.01), moderately (a = -0.05) and weakly (a = -0.1) 
correlated 

 Route length of 3 km (that is, 10 links), 9 km (that is, 30 links) and 15 km (that is, 50 links)  

 Travel time SD for links were either varied (0.2 s ~ 3.1 s) or constant (1.65 s). 

The results from this numerical experiment are presented in Table A-12. 

Table A-12: Correction factor (γ) values from the numerical experiment 

Link SD 
Level of correlation  
(‘𝐚’ in Equation 2.5) 

Correction factor (γ) 

3 km route 9 km route 15 km route 

Link travel time SD varies 
from 0.2 s to 3.1 s. 

Highly correlated (a = -0.01) 0.99 0.96 0.93 

Moderately correlated (a = -0.05) 0.94 0.83 0.75 

Weakly correlated (a = -0.1) 0.88 0.72 0.61 

Links travel time SD is 
uniform at 1.65 s. 

Highly correlated (a = -0.01) 0.98 0.95 0.92 

Moderately correlated (a = -0.05) 0.92 0.80 0.71 

Weakly correlated (a = -0.1) 0.86 0.68 0.57 

The correction factor (γ) in Equation 3.4 is the ratio of route travel time SD over the sum of SD of links on route 
in the table above. Key observations from the numerical experiment were as follows: 

 The correction factor is only marginally sensitive towards the SD of travel time of links. Thus, how the SD 
varies over a route does not significantly affect accuracy. 

 The correction factor is somewhat sensitive to the correlation between the links. A constant correction 
factor is more accurate in the case where links are more correlated. On the other hand, a constant 
correction factor would be less accurate in the case where the links are less correlated. If the correlation 
between the links is consistent across the network, then the impact of the level of correlation on accuracy 
would be marginal. 

 The correction factor is somewhat sensitive towards the distance of travel. A constant correction factor 
would overestimate the travel time SD on short routes by 15%. On the other hand, travel time SD for longer 
routes would be underestimated by 12% (that is, assuming a moderately correlated network). 
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The numerical experiment presented above neither calibrates nor validates the ARSD approach. It can be 
done using the available route and link travel time SD data for a given jurisdiction. The aim of this experiment 
was to show the merits to further investigate the application of the ARSD approach, given its ease of 
implementation in the network modelling exercise. The ARSD approach could be extended to consider different 
functional forms for the correction factor to improve model accuracy. However, such extensions are beyond 
the scope of this report. 
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A3 Datasets Used 

This appendix gives a summary of the various datasets that were used to calibrate the link, route and network 
level models proposed in this report. The datasets used correspond to different regions in Australia which 
indicate richness of analysis and consistent application of the models across jurisdictions in Australia. The 
datasets used are: Perth Network Performance Reporting System (NetPReS) dataset from Main Roads 
Western Australia (MRWA), Gold Coast National Performance Indicators (NPI) and Bluetooth (BT) data from 
the Department of Transport and Main Roads (TMR) Queensland, and Sydney travel time data from Google. 
The datasets are discussed below: 

A3.1 Perth NetPReS Data 

The Perth NetPReS data originally consists of 29 arterial and freeway routes in both directions. Figure A-14 
shows the map of routes for which data was available along with Table A-13 which provides the route names. 
The range of link lengths that make up the Perth network, span between 20 m and 37,920 m. 22 links, which 
are greater than 10 km in length, were not considered typical metropolitan links and were excluded from the 
analysis. As a result, two arterial routes were excluded, and the remaining 27 routes were used for the analysis. 

Figure A-14: NetPReS dataset metropolitan routes for Perth network 

 

The characteristics of filtered datasets are summarised below:  

 Covers metropolitan Perth area 

 Comprises bi-directional speed and volume data for arterials, controlled-access highways and freeways 

 Speed data was collected from multiple sources such as TomTom, AddInsight, NPI, IRIS, Intelematics 

 Data duration: 4 months (from 1 August 2018 to 31 November 2018) 

 Data resolution: every 15 min between 5am and 9pm. 

 Number of links: 947 
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 Total road length: 1076 km. 

Table A-13: Route information in NetPReS data 

Route ID Route Name Route ID Route Name 

1 Albany Hwy 16 Mitchell Fwy 

2 Armadale Rd 17 Orrong Rd 

3 Brookton Hwy 18 Reid Hwy 

4 Canning Hwy 19 Roe Hwy 

5 Cockburn Rd 20 South St 

6 Graham Farmer Fwy 21 South Western Hwy 

7 Great Eastern Hwy Inner 22 Stirling Hwy 

8 Great Eastern Hwy Outer 23 Thomas Rd 

9 Great Northern Hwy 24 Tonkin Hwy North 

10 Guildford Rd 25 Tonkin Hwy South 

11 Karrinyup-Morley Hwy 26 Toodyay Rd 

12 Kwinana Fwy 27 Wanneroo Rd / Indian Ocean Dr 

13 Leach Hwy 28 West Coast Hwy 

14 Marmion Av 29 Port Access 

15 Melville Mandurah Hwy   

 

Figure A-15 shows the distribution of links by link lengths in the filtered dataset. The figure shows that 58.9% 
of the links in the dataset are short links of less than 1 km in length, and 1.1% of the links are long links greater 
than 5 km in length. 

Figure A-15: Distribution of links in Perth NetPReS Dataset by link length 

 

Examination of the raw speed data was conducted to identify potential outliers, as a slow speed observation 
could significantly impact the travel time SD value and potentially skew the results. Inspection of the cause of 
the slow speed observations did not reveal any unusual event such as extreme weather or incidents. It was 
considered appropriate to consider the speeds below 10 km/h as unsuitable and excluded from the analysis. 
15,803 out of 5.66 mil (0.28%) observations were excluded as a result. 
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It was identified in the literature review that extreme weather conditions and major incidents that involved 
multiple lane closures have a significant impact on traffic volume and speed, particularly travel time reliability. 
As this study is focused on facilitating a robust comparison between month to month travel time reliability, days 
that experienced major incidents or weather events should be excluded from the analysis. A search for major 
incidents and extreme weather events was conducted, and no event was showed over the data period. 

A series of plots were then developed comparing CI against each of CoV and SD of link travel time to facilitate 
empirical analysis of the available data. It was found that a small percentage (0.2%) of observations showed 
CoV and SD value of 0 due to the reason that the speed was patched with identical values. It was considered 
appropriate to exclude them from the analysis. Figure A-16 shows the plot for all available links that are less 
than 10 km in length. Similarly, a comparison was conducted for the following indicators:  

1. Direction of travel 

2. Link length 

3. Time of day 

4. Road type. 

Figure A-16: Travel time CoV against SD for links in NetPReS Dataset - arterial 

  

The CoV figure above shows a ‘triangle’ shape. The CoV starts from 0 when CI equals 1. The value of CoV 
gradually increases as the congestion index increases. However the figure shows that the range of CoV 
become wider as the CI increases, and when CI reaches a certain point, e.g. CI=1.3 on the graph, the range 
of CoV becomes narrower as the CI continues to increase. The centre point of CoV range for CI value greater 
than 1.3 is constant at approximately 0.4 or slightly below 0.4. This finding is consistent with the literature that 
“at very low traffic volumes the traffic state could be ‘unstable’ and the variability of travel times might be higher 
than expected. As traffic volumes increases, the traffic state is becoming ‘stable’ up to the local minimum point. 
From this point the traffic starts to become heterogeneous and travel time variability is increasing with the 
saturation level. Then towards a heavy congestion state, traffic is about to become homogenous due to 
queuing in which state the variability of travel times is decreasing.’ PIARC (2019). This can also be used to 
explain the observation in the SD figure. Furthermore, there is a limited representation of points with CI value 
greater than 4 which indicates that instances of excessively long travel times (denoted by CI greater than 4) 
are infrequent which makes sense due to the prevailing traffic characteristics in the Perth metropolitan area.  

Figure A-17 shows the comparison based on the direction of travel. The trend and magnitude for CoV and SD 
of travel time are shown to be similar for both directions. Thus, at a macro-level (e.g. network), it is expected 
that a generalised set of parameters can be applicable to both inbound and outbound data.  
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Figure A-17: CoV against SD for two directions of travel in NetPReS Dataset – arterial 

 

  

Figure A-18 compares the CoV and SD for different categories of link lengths. The figure shows that while the 
link length does not have an impact on the slope of the CoV curves or the shape of the CoV graph, it however 
does have an impact on the SD curves. The slope of the SD curve increases as the link length is increased, 
which again is consistent with previous findings in the literature. The longer a link gets, the more it is prone to 
experience delays (due to more incidents, traffic lights, etc.) thus adding to travel time variability. The slope of 
the SD curve increases as the link length is increases. The CoV, on the other hand, appears to be length 
independent. It can also be mathematically proven why CoV is length independent:   

𝑪𝒐𝑽 =  
𝝈

𝑻
=

𝑺𝑫

𝑴𝒆𝒂𝒏 𝒕𝒓𝒂𝒗𝒆𝒍 𝒕𝒊𝒎𝒆
 

𝑻 =
𝑳

𝑽
=  

𝑳𝒆𝒏𝒈𝒕𝒉

𝑺𝒑𝒆𝒆𝒅
 

𝑪𝒐𝑽 =
𝝈 × 𝑽

𝑳
 

The normalisation of travel time SD, which depends on link length, divided by link length makes CoV 
independent of the link length. Thus, at a network level, a generalised set of parameters for CoV estimation 
should be sufficient for all link lengths.  
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Figure A-18: CoV against SD for different link lengths in NetPReS Dataset – arterial  
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Figure A-19 shows the split of observed data by the time of the day. The data points for the different time-
periods does not appear to have an impact in both CoV and SD graphs, which indicates that a generalised set 
of parameters can be applicable to model different time-periods. 

Figure A-19: CoV (LHS) and SD (RHS) against CI for different time-periods in NetPReS Dataset – arterial  
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Similar analysis was also conducted on freeway data, with the findings being consistent with arterial data. The 
travel direction, link length and time-period do not appear to have an impact on CoV values, which again 
indicates that a generalised set of parameters can be applicable to model different travel directions, link lengths 
and time-periods. 

Figure A-20 shows the comparison based on road type. The Perth road network is made up by three road 
types: arterials, controlled access highways (CAH) and freeways. The CAH and freeways were combined since 
they depict similar characteristics and were then compared against the arterials. The magnitudes of CoV and 
SD of travel time are quite different between the road types, thus justifying the need of two sets of parameters 
for different road types. The CoV curve for freeways is slightly steeper than that of arterials, the CoV value for 
freeway peak is earlier than arterial, e.g., at CI=1.1 for freeway vs at CI=1.3 for arterial, and the spread of CoV 
values narrow at faster rate than arterial as the CI value continue to increase. However, the number of 
datapoints for freeways and CAH are less when compared to that of the arterials. 

Figure A-20: CoV and SD against CI for different road types in NetPReS Dataset 

 

 

A3.2 Gold Coast NPI and Bluetooth Data 

Figure A-21 shows the study site locations and boundaries of the Gold Coast NPI data. This network is made 
up of a series of local roads, arterial and freeway routes in both directions. The specifications of the dataset 
are summarised below. Data was converted into 15 min resolution to allow for direct comparison between 
Perth and Gold Coast data. The data conversion method applied was the sum of three 5-min volumes as new 
volume and volume weighted average speed. The characteristics of the datasets are summarised below: 

 Covers metropolitan Gold Coast area 

 Comprises NPI speed and volume data, Bluetooth speed data  

 Arterials and freeways administered by the TMR, arterials and local streets by the councils 

 Data duration: 1 month (February 2019) 

 Data resolution: 5 min collected 24/7. 
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Figure A-21: Available NPI data available for Gold Coast network 

 

Figure A-22 shows the distribution of links based on link lengths in the Gold Coast network. All the links are 
up to 3 km long. When compared to the Perth network, the Gold Coast data has a greater proportion of shorter 
links (less than 0.5 km in length). In terms of the total percentage, 42.5% of Gold Coast links are less than 
0.5km in length compared to 30.1% for Perth. The reasons for this variation could be geographical differences 
and the way links are defined and scoped across the two jurisdictions. 

Figure A-22: Gold Coast network link length histogram 

 

The main difference between the Perth and Gold Coast datasets is the road types in the dataset. The Perth 
dataset only contains State controlled arterial and freeways. The Gold Coast dataset contains both state 
controlled arterials and freeways and Council controlled arterials and side streets. Most of the links in Gold 
Coast comprise arterials and the side street data are less than 0.5 km in length.  

An initial assessment of the side streets data failed the data quality test. Side streets had much lower priority 
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and tended to give way to main road, therefore the slower speed on side street did not indicate a congestion 
and congestion index in this case could cause a false impression of congestion. A discussion with TMR 
representatives concluded that this side street data should be excluded from analysis. ARRB (2018) in R47 
NACoE project using similar dataset also concluded that the short NPI link length configured for side-streets 
tended to present a problematic profile when investigating travel time variability. 

Table A-14 outlines the number of links per road type for the Gold Coast dataset as well as the data quality 
assessment results whether to be used for the analysis. 

Table A-14: Gold Coast dataset road type 

Gold Coast Road type Number of links As % of total link number Used for analysis (Y/N) 

Motorway (TMR) 46 5.9% Y 

Arterial (TMR) 231 29.5% Y 

Arterial (Council) 168 21.5% Y 

Side Street (Council) 338 43.2% N 

The same filters that were used in Perth data were also applied to the Gold Coast data, namely exclude CoV 
values that equalled 0 and speed observation below 10 km/h. Figure A-23 shows the comparison based on 
road type side-by-side using two different data sources. For the NPI data on the left, even though the shape 
of the CoV distribution was still a ‘triangle’ as found in the Perth data, the lower bound CoV value for high CI 
was unexpectedly low, at CI equal 3.35, the CoV value equal 0.02. As the CI increases, the value of CoV tends 
to reduce towards 0. The possible explanation for this could be due to the nature of NPI arterial data been 
modelled rather measured. The modelled speed might not necessarily represent the true speed and introduces 
greater uncertainty. Therefore, to avoid potential misleading results, Gold Coast Bluetooth data was also 
utilised to allow direct comparison with the NPI data. 

The freeways show a visibly different trend when compared to arterials. There is a lack of datapoints for 
freeways beyond a CI of 2 which may affect the ATAP link model goodness of fit for the dataset. The difference 
in the shape of CoV distribution between arterial and freeway indicated that two sets of parameters are required 
for different road type, which is consistent with the Perth dataset.  

Figure A-23: CoV Against CI for different road types in NPI and bluetooth data 
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 To elaborate the limitation of NPI arterial data further, Figure A-24 shows the CoV against CI from arterial 
data without the 0 CoV filter in an attempt to observe the complete trend from NPI arterial dataset. A clear 
trend is now seen as the CI value increases, the tendency of CoV reduce to zero is very high. This is deemed 
to be the limitation of NPI data which cannot be observed from field data. 

Figure A-24: CoV against CI from NPI arterial data – CoV of 0 included 

     

Through the comparison of Gold Coast NPI speed data with Bluetooth speed data in this section, Bluetooth 
data was deemed to provide better speed data quality for the following reasons: 

 NPI speed data are modelled rather measured from field 

 NPI speed data showed a decrease in CoV (to zero) as CI increased (see Figure A-24), which 
contrasted with the trends observed in other datasets. 

Therefore, Bluetooth data was more suitable for the purpose of this project and was utilised for the validation 
of ATAP model. 

A3.3 Sydney Google Data 

Moylan et al. (2018) collected a variety of data for the Sydney Greater Metropolitan Area (GMA) to study travel 
time reliability. This project utilised the travel time data from Moylan et al. (2018) which was collected using 
the Google Maps Directions API. Travel times prevailing on 37 routes, 74 routes when considering bi-
directional movement, spread across the study area were collected. The data was collected by pinging the 
Google Maps Directions API 55 times a day, storing the real-time travel time value provided under the field 
‘duration in traffic’ in the API, for a period of 14 months (February 2017 – March 2018). Figure A-25 shows the 
spatial locations of the 37 routes selected for analysis by Moylan et al. (2018). Table A-15 lists the names of 
these routes which includes a few major arterials and motorways in Sydney.  
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Figure A-25: Routes chosen in the Sydney GMA (source: Moylan et al. (2018)) 

 
 

Table A-15: Description of the chosen routes  

Road ID Name Start Point End Point Route ID Location 
M1  Gore Hill Freeway  Lane Cove  North Sydney  1 Inner  
M1  General Holmes Dr  Surry Hills  Mascot  2 Inner  
M5  M5 & M5 East  Casula  Mascot  3 Inner  
A1  Pacific Highway  Lane Cove  North Sydney  4 Inner  
A4  City West Link  Rozelle  Haberfield  5 Inner  
A8  Military Road  Balgowlah  Cammeray  6 Inner  
A22  Parramatta Road  Ashfield  Sydney  7 Inner  
A34  Milperra Road  Newtown  Liverpool  8 Inner  
A36  Princes Highway  Arncliffe  Haymarket  9 Inner  
A40  Victoria Road  Rozelle  Hunters Hill  10 Inner  
 Botany Road  Haymarket  Marrickville  11 Inner  
 Anzac Parade  Waterloo  La Perouse  12 Inner  

 
New South Head 
Road  

Potts Point  Vaucluse  13 Inner  

 Eastern Valley Way  
Roseville 
Chase  

Cammeray  14 Inner  

M2  Hills Motorway  Seven Hills  North Ryde  15/27 
Middle/O
uter  

M4  Clyde  Concord  16  Middle  
A1  Princes Highway  Blakehurst  Arncliffe  17 Middle  
A1  Pacific Highway  Roseville  Lane Cove  18 Middle  
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Road ID Name Start Point End Point Route ID Location 
A3  Lane Cove Road  North Ryde  Ryde  19 Middle  
A4  Parramatta Road  Concord  Ashfield  20 Middle  
A8  Pittwater Road  Brookvale  Balgowlah  21 Middle  
A22  Liverpool Road  Bankstown  Ashfield  22 Middle  
A38  Warringah Road  Roseville  Frenchs Forest  23 Middle  
A40  Victoria Road  Parramatta  Hunters Hill  24 Middle  
 The Grand Parade  San Souci  Mascot  25 Middle  
M1  Pacific Motorway  Morisset  Wahroonga  26 Outer  
M7  Westlink Motorway  Eastern Creek  Seven Hills  28 Outer  
M31  Hume Highway  Wilton  Casula  29 Outer  
A1  Princes Highway  Heathcote  Blakehurst  30 Outer  
A2  Old Windsor Road  Rouse Hill  Bella Vista  31 Outer  
A3  Mona Vale Road  Mona Vale  Pymble  32 Outer  

A6  
New Illawarra Road, 
Alfords Point Road  

Padstow  Heathcote  33 Outer  

A8  Pittwater Road  Mona Vale  Brookvale  34 Outer  
A22  Liverpool Road  Liverpool  Bankstown  35 Outer  

A28  
Cumberland 
Highway  

Wahroonga  Carlingford  36 Outer  

A44  
Great Western 
Highway  

Eastern Creek  Parramatta  37 Outer  

 The Horsley Drive  Horsley Park  Lansvale  38 Outer  

Source: Moylan et al. (2018) 

The Sydney network is made up by 1256 links, with link length spans between 1 m and 6,279 m. Figure A-26 
shows the distribution of links based on link lengths in the Sydney network.  

Figure A-26: Sydney network link length histogram 

 
 

The travel times on the links forming these routes was also collected using the Google Maps Distance Matrix 
API which provided the shortest-path travel time between the starting and the ending point on a link. In addition 
to Google data, traffic counts data, including motorway loop detectors were also collected as part of this study.  

For each query time for each route in the Sydney case study, the component links were summed up to estimate 
an instantaneous travel time. The summed-link and route travel times were compared in Figures A-27, A-28 
and A-29. Even at the extremes of observed conditions, the correlation between the two measures were strong. 
Arterial routes (e.g., Route 6.0, Military Road) tended to show more scatter than motorways (e.g.. Route 2.0, 
M1 Motorway). Most routes in the study do not show any systematic biases between the route travel time and 
the summed link travel times, but the most common disagreement is that the summed links tend to 
overestimate the travel times during periods of congestion (for example, Route 11, Botany Road). 
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Figure A-27: Comparison of route and summed link travel times for an arterial route (Military road)  

 

Source: Moylan et al. (2018) 

Figure A-28: Comparison of route and summed link travel times for a motorway (M1)  

 

Source: Moylan et al. (2018) 
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Figure A-29: Comparison of route and summed link travel times for an arterial route (Botany road)  

 

Source: Moylan et al. (2018) 
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A4 Route Correlation Analysis  

The aim of the correlation analysis was to verify whether the link travel times are correlated with one another. 
Once this was verified, the next step was to find the best model form for predicting the travel time correlation 
coefficient between two given links. This was achieved through first developing the Nicholson correlation 
coefficient on the available data and comment on the model goodness-of-fit. The preliminary analysis was 
conducted using the Perth NetPReS data. An alternative model form would be explored if the CCM 
recommended by Nicholson was not found to be the best model form. 

A4.1 Correlation on Freeways or Controlled Access Highways (CAHs) 

Assuming link travel times to be independent of one another can significantly underestimate travel time 
reliability cost (Nicholson, 2015, Moylan et al., 2018). The travel time correlation coefficient between links, 
based on midpoint to midpoint distance is shown in Figure A-31 for the Mitchell Freeway in Perth (for inbound 
and outbound data across different peak traffic).  

Figure A-31: Travel time correlation coefficient between links – Mitchell freeway, Perth 

    

Figure A-31 indicates that that the link travel times are not independent. As expected, links close to each other 
tend to have a higher travel time correlation coefficient when compared to the links further apart. For the 
inbound direction, the AM peak has the highest correlation coefficient value between the links, which makes 
sense, while the PM peak has the lowest correlation coefficient value. Similarly, for the outbound direction, the 
PM peak has the highest correlation coefficient value between the links which again makes sense as it is 
associated with people leaving work.  

Figure A-32 shows the travel time correlation coefficient plot for a CAH, the Tonkin Highway South. Although 
it is not as obvious as Figure A-31, the correlation between travel times for different links within a route can 
still be observed. The time-of-day trend does not appear to be significantly different for different directions. 
Further analysis is required to confirm whether this is individual case or a case in general. If all the CAHs were 
to behave similarly, it is recommended to exclude CAHs from the freeway parameters or assign an additional 
category for CAH to reduce the chance of modelling error and improve model accuracy. 
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Figure A-32: Travel time correlation coefficient between links – Tonkin highway South 

    

A4.2 Correlation on Arterial 

It was initially assumed that an arterial route would have a lesser travel time correlation when compared to a 
freeway due to a higher exposure to other road users (such as pedestrians and cyclists, school zones, trams, 
parking, etc) and resulting in a greater variability. Geometrical differences in freeway and arterial road can also 
contribute to the reduction in travel time correlation. Figure A-33 shows the travel time correlation coefficient 
between links for two selected arterial routes in both inbound and outbound directions. 

Figure A-33: Travel time correlation coefficient between links – arterial 
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The correlation coefficient value between links for both the inbound and outbound direction on arterial roads 
does not appear to be significantly different to each other. The time of day for the outbound direction appears 
to overlap with each other. However, for the inbound direction, both routes show different trends for different 
times of the day, with the AM peak showing the highest correlation while the PM peak shows the lowest 
correlation. The magnitude of the correlation (around 0.4) does appear to be significantly lower than freeway 
(closer to 1) which makes sense due to the reason discussed above. Thus, it can be concluded that the link 
travel times are not independent and that there is a correlation between the travel times for different links within 
a route. Freeways were found to have much higher correlation between link travel time compared to arterial 
roads. 

A4.3 Model Comparison 

This sub-section presents the calibration results for the other two models, exponential (proposed by Nicholson 
(2015)) and shifted exponential developed alongside the linear-log CCM (Equation 3.4). Tables A-16 and A-
17 present the summaries for the exponential and shifted exponential models respectively. The R-squared 
values of these two models are lower, in general, than the linear-log CCM presented in earlier Table A-15 
(barring some R-squared values for the freeway inbound for the exponential model). This indicates a superior 
model fit of the linear-log CCM.  

A few shifted exponential models (shown in Table A-17) failed to converge within 10,000 iterations of the 
optimisation procedure, and hence were unable to reach the optimal parameters which minimise the RMSE. 

Table A-16: Calibrated parameters for the exponential Model 

Road type Direction Time-period 𝒂 R2 

Arterial 

Inbound 

AM peak -2.51*** -0.2680 

Inter peak -7.0626*** 0.0071 

PM peak -5.420*** -0.0207 

Off peak -2.905*** -0.4278 

Outbound 

AM peak -5.2721*** -0.2357 

Inter peak -7.1432*** 0.0116 

PM peak -3.6246*** -0.0403 

Off peak -3.1981*** -0.2760 

Freeway 

Inbound 

AM peak -0.6012*** 0.3997 

Inter peak -0.8310*** 0.3954 

PM peak -0.6975*** 0.3453 

Off peak -0.6941*** 0.3445 

Outbound 

AM peak -1.2369*** 0.0127 

Inter peak -1.018*** 0.2853 

PM peak -0.4371*** 0.2670 

Off peak -0.5694*** 0.0692 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
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Table A-17: Calibrated parameters for the shifted exponential model 

Road 
type 

Direction Time-period 𝒂 𝐛 𝐜 R2 

Arterial 

Inbound 

AM peak -1130.263 0 1130.385 0.1106 

Inter peak -373.436 0 373.473 0.0318 

PM peak -457.1049 0 457.157 0.0511 

Off peak -867.429 0 867.549 0.1332 

Outbound 

AM peak Model failed to reach convergence 

Inter peak -414.276 0 414.312 0.0452 

PM peak -861.366 0 861.437 0.0937 

Off peak Model failed to reach convergence 

Freeway 

Inbound 

AM peak Model failed to reach convergence 

Inter peak -1396.630 0 1396.769 0.1173 

PM peak -1332.581 0 1332.746 0.1298 

Off peak Model failed to reach convergence 

Outbound 

AM peak Model failed to reach convergence 

Inter peak -1437.469 0 1437.593 0.1011 

PM peak Model failed to reach convergence 

Off peak Model failed to reach convergence 

Note: asterisks denote statistical significance: * at 10%, ** at 5%, *** at 1%. 
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A5 Application of ARSD 

This appendix presents the application of the ARSD method using the Sydney road network (comprising 74 
routes (37x2) only) and the Google travel time data given in Moylan et al. (2018). The appendix first describes 
the outputs from the traditional traffic assignment algorithm, that is UE, on the given information. These outputs 
are in turn used as inputs to run the ARSD approach. The results from the ARSD method, that is route travel 
time SD are presented towards the end of this appendix.  

A5.1 Inputs to ARSD Method 

The standard UE model on the Sydney network resulted in link flows and travel times under equilibrium 
conditions, that is when no traveller can further reduce the travel time, between an OD pair, by unilaterally 
shifting between the routes. In other words, the travel time on all used paths between an OD pair are minimum 
and equal at UE. Figure A-34 shows a snapshot of the output file generated from UE. The first and the second 
column denote the starting node and the ending node respectively which define a link. Volume is reported in 
veh/h while travel time is in minutes.  

Figure A-34: UE link flows and travel time for Sydney road network 

 

Apart from the UE outputs, the following network information was also available. Firstly, the existing link level 
details which are shown in Figure A-35. In this figure, from and to are the start and end nodes defining a link, 
capacity is the maximum flow on a link (in veh/h), length is the length of the link (in m) and free flow time (in 
minutes) is the ratio of link length and speed limit (in km/h). Secondly, the mapping information which relates 
individual links into the 37 routes of interest for which Google travel time data is available. Figure A-36 shows 
this mapping where Route ID comprises two fields, that is route ID of interest which is the same as given in 
Table A-14 in Appendix A3 and D01 and D02 represent the two directions. Node represents the starting node 
for a given link in a route along with the latitude and longitude of this node.  

Figure A-35: Link details for Sydney road network 
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Figure A-36: Mapping between links and route IDs for Sydney road network 

 

A5.2 Processing Methodology 

The ARSD method is applied using the above information. The methodology for data processing and analysis 
is summarised below: 

Step 1:  Segregate the Sydney dataset into arterial and freeway routes  

Step 2:  Determine the link travel time SD (𝜎) using the calibrated ATAP model (Equations 4.1 or 4.2) 
separately for all the links forming the arterial and freeway routes  

Step 3:  Determine the route travel time SD (𝜎) for each arterial and freeway route using the ARSD 
formula given in Equation 3.4. Assume 𝜸 as 0.41 and 0.45 for arterial and freeway respectively 
(refer to Table 4-6).  

Step 4:  Plot the estimated route travel time SD across all arterial and freeway routes 

Step 5:  Record findings and make recommendations 
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A6 Application of StrUE 

This appendix presents the results obtained from the scenario testing undertaken on the Sydney test network 
using StrUE modelling.  

Scenario-2: The speed limits on all links decreased by 10kmph 

Past research has shown that increased speed limits result in higher crash incidence and severity leading to 
greater uncertainty in the network and exacerbating congestion events. Therefore, this scenario considers 
transport authorities reducing speed limits across the study area by 10km/h. However, this would likely have 
adverse impacts on Travel Time measures at both link level and route level. Table A-18 shows the results for 
a random sample of 10 links in the network, which highlights the expected increase in travel times after the 
implementation of the speed reductions. However, there is generally a reduction in the coefficient of variation 
in travel time, which suggests that less variation about the mean travel time, indicating an improvement in 
standardised reliability.  

Table A-18: Scenario-2 - Percentage change in travel time (TT) metrics for randomly selected links in the network 

Route 
From Node 
Coordinates 

To Node 
Coordinates 

Suburb 
Link 

Length 
(m) 

% change 
in 

Expected 
TT 

% 
change 
in SD of 

TT 

% 
change 
in CoV 
of TT 

M1 
General 

Holmes Dr 

-33.936771, 
151.1978781 

-
33.9338887, 
151.2106665 

Mascot 1277 17 14 -3 

A1 Pacific 
Highway 

-33.8354889, 
151.2053255 

-
33.8276538, 
151.2006783 

North 
Sydney 

981 28 12 -12 

A34 
Milperra 

Road 

-33.9360905, 
151.0109709 

-
33.9298806, 
150.9908058 

Revesby 1991 16 32 13 

A40 
Botany 
Road 

-33.921096, 
151.1967991 

-
33.9055165, 
151.2028326 

Alexandria 1869 24 13 -8 

A40 New 
South 
Head 
Road 

-33.8709482, 
151.251437 

-
33.8724953, 
151.2598255 

Bellevue 
Hill 

885 26 9 -14 

A1 Pacific 
Highway 

-33.8053918, 
151.1794154 

-
33.8104226, 
151.1771309 

Artarmon 642 24 13 -9 

A8 
Pittwater 

Road 

-33.7887083, 
151.2652612 

-
33.7955396, 
151.2530601 

Balgowlah 1577 20 -10 -25 

A40 
Victoria 
Road 

-33.8166083, 
151.1093996 

-
33.8160805, 
151.1039224 

Ryde 547 21 0 -17 

A1 Princes 
Highway 

-34.0238036, 
151.0890585 

-
34.0266529, 
151.0850233 

Kareela 500 16 18 1 

A44 The 
Horsley Dr 

-33.8886837, 
150.9695904 

-
33.8846809, 
150.9674909 

Villawood 495 22 -5 -22 
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Figures A-37, A-38 and A-39 show the percentage change in Expected, SD, and CoV of travel times from 
different zones to the CBD respectively. The expected travel times increased by 18% to 27%, whereas the 
standard deviations increased by 8% to 68%.  

Figure A-37: Scenario-2 - Percentage Increase in expected TT from different zones to CBD 
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Figure A-38: Percentage Increase in SD of TT from different zones to CBD 

 

Figure A-39: Percentage change in CoV from different zones to CBD  

 

Note: +ve indicates increase and -ve decrease 
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Scenario-3: Capacity increase of 25%, both directions, A34, Milperra Road 

A34 (Milperra Road), a 26km arterial road connects Bankstown, located in the Inner West Region of Sydney 
to Newtown, a suburb less than 5km from Sydney’s CBD. In this scenario, the capacity of all links on both 
directions of Milperra Road were increased by 25%. This scenario represents a realistic infrastructure project 
that traffic authorities could consider as a means of improving road network performance. Table A-19 presents 
the results of 10 randomly selected links in the network presenting a mixed set of results. Milperra Road and 
the Pacific Highway present considerable improvement in both travel time and travel time reliability which could 
be a result of these links serving a metropolitan regional connection between the south-west and north east of 
Sydney.   

Table A-19: Scenario-3 - Percentage change in TT metrics for randomly selected links in the network 

Route 
From Node 
Coordinates 

To Node 
Coordinates 

Suburb 
Link 

Length 
(m) 

% change 
in 

Expected 
TT 

% 
change 
in SD 
of TT 

% 
change 
in CoV 
of TT 

M1 
General 

Holmes Dr 

-33.936771, 
151.1978781 

-33.9338887, 
151.2106665 

Mascot 1277 2 -12 -13 

A1 Pacific 
Highway 

-33.8354889, 
151.2053255 

-33.8276538, 
151.2006783 

North 
Sydney 

981 -4 -39 -37 

A34 
Milperra 

Road 

-33.9360905, 
151.0109709 

-33.9298806, 
150.9908058 

Revesby 1991 -10 -32 -25 

A40 
Botany 
Road 

-33.921096, 
151.1967991 

-33.9055165, 
151.2028326 

Alexandria 1869 3 -14 -17 

A40 New 
South 
Head 
Road 

-33.8709482, 
151.251437 

-33.8724953, 
151.2598255 

Bellevue 
Hill 

885 0 -6 -6 

A1 Pacific 
Highway 

-33.8053918, 
151.1794154 

-33.8104226, 
151.1771309 

Artarmon 642 -1 0 2 

A8 
Pittwater 

Road 

-33.7887083, 
151.2652612 

-33.7955396, 
151.2530601 

Balgowlah 1577 3 -8 -11 

A40 
Victoria 
Road 

-33.8166083, 
151.1093996 

-33.8160805, 
151.1039224 

Ryde 547 -1 8 9 

A1 Princes 
Highway 

-34.0238036, 
151.0890585 

-34.0266529, 
151.0850233 

Kareela 500 0 16 16 

A44 The 
Horsley Dr 

-33.8886837, 
150.9695904 

-33.8846809, 
150.9674909 

Villawood 495 -2 -2 0 

Figures A-40 and A-41 show the percentage change in travel time metrics for inbound and outbound links 
along the Milperra Road. All these metrics show reductions for most of the links except for a few where there 
is a sharp increase in SD and CoV of travel times. This presents the complex feedback effects capacity 
alterations to select links have across the network, emphasising the importance of developing accurate and 
robust network models that capture reliability at both a macro and micro scale. Overall, the inbound route of 
Milperra Road towards the CBD showed a reduction of 10% in travel time and an increase of 2% in standard 
deviation. On the other hand, the outbound route showed a reduction of 8% in expected travel time and even 
greater reduction of 21% in standard deviation. This is intuitive as during the AM peak period, the inbound 
route services peak traffic demands resulting in more moderate benefits.  
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Figure A-40: Scenario-3 - Percentage change in travel time metrics for all links along Milperra road (towards city) 

 

Figure A-41: Scenario-3 - Percentage change in travel time metrics for all links along Milperra road (away from city) 

 

Figures A-42, A-43 and A-44 show the percentage change in Expected, SD, and CoV of travel times from 
different zones to the CBD respectively. Milperra Road is also highlighted (the blue dots) in these Figures. The 
expected travel times changed by -4% (improvement) to 2% (deterioration), whereas the standard deviations 
changed by -10% (improvement) to 22% (deterioration). Although this scenario resulted in a reduction in 
expected travel times around the zones that the Highway passes through, there is no significant reduction in 
standard deviation. It is important to note that several zones in the North Shore region showed increases in 
expected travel times but reduction in standard deviations again positing the notion of an improvement in 
standardised reliability. On the other hand, several zones in the North West region (around the suburbs of 
Eastwood, Epping, and Ryde) showed the opposite trend of a reduction in expected travel times combined 
with a significant increase in standard deviation, highlighting greater unreliability levels.  
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Figure A-42: Scenario-3 – Percentage change in expected TT from different zones to CBD  

 

Note: +ve value indicates increase and -ve decrease 
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Figure A-43: Scenario-3 – Percentage change in SD of TT from different zones to CBD  

 

Note: +ve value indicates increase and -ve decrease 

Figure A-44: Scenario-3 - Percentage change in CoV of TT from different zones to CBD  

 

Note: +ve value indicates increase and -ve decrease 
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The above scenario analysis highlights the fine-grained network wide analysis that can be completed by 
applying the StrUE traffic assignment approach within a strategic model. This methodology offers direct 
estimation of standard deviation of travel time for each link and route of the network, thus providing a clear 
path to measuring and monitoring reliability. The scenario analysis clearly indicates that policies and 
infrastructure projects do not have homogenous impacts across a network or even within a sub-network. This 
emphasises the importance of network analysis that endogenously incorporates reliability within the modelling 
framework. 
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